Как составить уравнение медианы треугольника по координатам его вершин?
Медиана соединяет вершину треугольника с серединой противолежащей стороны. Следовательно, при решении задачи составления уравнения медианы нужно:
- Найти координаты середины отрезка по координатам его концов.
- Составить уравнение прямой, проходящей через две точки: найденную середину отрезка и противолежащую вершину.
Дано: ΔABC, A(3;1), B(6;-3), C(-3;-7).
Найти уравнения медиан треугольника.
Обозначим середины сторон BC, AC, AB через A1, B1, C1.
Уравнение медианы AA1 будем искать в виде y=kx+b.
Найдём уравнение прямой, проходящей через точки A(3;1) и A1(1,5;-5). Составляем и решаем систему уравнений:
Отсюда k= 4; b= -11.
Уравнение медианы AA1: y=4x-11.
2) Аналогично, координаты точки B1 — середины отрезка AC
Можно в уравнение y=kx+b подставить координаты точек B(6;-3) и B1(0;-3) и найти k и b. Но так как ординаты обеих точек равны, уравнение медианы BB1 можно найти ещё быстрее: y= -3.
3) Координаты точки C1 — середины отрезка BC:
Отсюда уравнение медианы CC1 : y=0,8x-4,6.
Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать
Длина медианы треугольника
Медиана треугольника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Каждый треугольник имеет ровно три медианы, по одной из каждой вершины, и все они пересекаются друг с другом в центре треугольника. В случае равнобедренного и равностороннего треугольников, медиана делит пополам любой угол в вершине у которого две смежные стороны равны.
Видео:Вычисляем высоту через координаты вершин 1Скачать
Калькулятор длины медианы треугольника
Онлайн калькулятор расчета длины медианы треугольника при условии, что известны координаты его вершин. Нахождение длины трех медиан треугольника
Формула расчета длины медианы
- a,b,c — Длина сторон треугольника.
Пример расчета медиан:
Даны точки A( 1 , 5 ), B( 8 , 9 ) и C( 5 , 6 ). Найдите медианы треугольника.
Получаем:
A( 1 , 5 ) B( 8 , 9 ) C( 5 , 6 )
Решение:
Шаг 1:
Найдем длину сторон a,b,c используя формулу
Найдем длину стороны A между точками B( 8 , 9 ) and C( 5 , 6 )
a = √((5 — 8) 2 + (6 — 9) 2 )= 4.242
Найдем длину стороны B между точками C( 5 , 6 ) и A( 1 , 5 )
b = √((1 — 5) 2 + (5 — 6) 2) = 4.123
Найдем длину стороны C между точками A( 1 , 5 ) и B( 8 , 9 )
c = √((8 — 1) 2 + (9 — 5) 2) = 8.062
Шаг 2:
Полученные значения a,b,c применяем в формулы
ma = (1/2) √2c 2 + 2b 2 — a 2
mb = (1/2) √(2c 2 + 2a 2 — b 2 )
mc = (1/2) √(2a 2 + 2b 2 — c 2 )
- ma = (1/2)√(2(8.062) 2 + 2(4.123) 2 — 4.242 2 )= 6.042
- mb = (1/2)√(2(8.062) 2 + 2(4.242) 2 — 4.123 2 )= 6.103
- mc = (1/2)√2(4.242) 2 + 2(4.123) 2 — 8.062 2 = 1.118
Видео:Уравнения стороны треугольника и медианыСкачать
Уравнение медианы в трехмерном пространстве
уравнение и длину высоты А D ; уравнение и длину медианы СЕ; внутренний угол В; систему линейных неравенств, определяющую треугольник. Сделать чертеж.
Y
1. Составим уравнения всех сторон треугольника, используя уравнение прямой, проходящей через две данные точки.
.
Так как точки А и С имеют одинаковую ординату, используем данное уравнение в преобразованном виде:
.
2. Найдем длину высоты А D . Используем формулу расстояния от точки до прямой:
.
Приведем уравнение ВС к общему уравнению прямой.
.
3. Составим уравнение высоты А D . Она проходит через точку А(2,1) и перпендикулярна прямой ВС, k BC =2/3. Из условия перпендикулярности k AD =-1/ k BC =-3/2. Воспользуемся уравнением прямой, проходящей через данную точку в данном направлении:
.
4. Для нахождения длины и уравнения медианы СЕ найдем координаты точки Е как середины отрезка АВ.
Точка Е (1 /2,2).
5. Найдем внутренний угол В. Он отсчитывается в положительном направлении от прямой ВС к прямой АВ. k BC =2/3, k AB =-2/3.
6. Составим систему линейных неравенств, определяющую треугольник. Запишем уравнения сторон в виде
AB : 2 x + 3 y = 7 ,
BC : 2 x — 3 y =- 11 ,
Подставим точку с координатами (-1, 2), лежащую внутри треугольника, в левые части равенств.
2 x — 3 y =- 2-6=-8>-11,
Следовательно, система неравенств, описывающая треугольник, имеет вид
Задача 2. Составить каноническое уравнение гиперболы, если известно, что ее эксцентриситет равен 1,25 и гипербола проходит через точку .
Решение . Каноническое уравнение гиперболы имеет вид . Так как гипербола проходит через точку А (8; ), то ее координаты удовлетворяют уравнению гиперболы, т.е. . Так, как = 1,25, то = 1,25, но , тогда = 1,5625 или .
Итак, получаем систему двух уравнений с двумя неизвестными а и b .
Решая эту систему, находим = 16 и = 9, следовательно, каноническое уравнение гиперболы имеет вид .
Задача 3. Составить уравнение прямой, проходящей через вершину параболы и центр окружности .
Решение . Найдем координаты вершины параболы и координаты центра окружности. Для этого выделим полные квадраты по каждой переменной.
Уравнение параболы: ;
уравнение окружности: .
Следовательно, вершина параболы имеет координаты В (2;3), а центр окружности имеет координаты С (-2; 1).
Тогда уравнение искомой прямой составим по формуле
.
Получим , или .
🎬 Видео
Математика без Ху!ни. Уравнение плоскости.Скачать
№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать
№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Написать канонические и параметрические уравнения прямой в пространствеСкачать
Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
11. Прямая в пространстве и ее уравненияСкачать
Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Математика это не ИсламСкачать
Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
Аналитическая геометрия на плоскости. Решение задачСкачать
Уравнение прямой и треугольник. Задача про высотуСкачать
Длина медианы треугольникаСкачать
Уравнение прямой в пространстве. 11 класс.Скачать