Уравнение линии уровня через точку

Видео:Нахождение градиента функции в точкеСкачать

Нахождение градиента функции в точке

Линии и поверхности уровня

Содержание:

Видео:Поверхности и линии уровняСкачать

Поверхности и линии уровня

Линии и поверхности уровня

Понятие линии и поверхности уровня:

Для характеристики функций двух переменных вводится понятие линий уровня.

Определение 2. Линией уровня функции z = f (x, y) называется совокупность всех точек на плоскости Oxy, для которых выполняется условие f (x, y) = C.

Линии уровня можно получить, пересекая поверхность z = f (x, y) плоскостями z = C, где С = соnst.

Пример 1. Найти линии уровня функции z = x 2 + y 2 .

Решение.
Пусть z = C. x 2 + y 2 = C (C ≥ 0),

В этом случае линиями уровня является множество концентрических окружностей с центром в начале координат и радиусом С (рис. 2) .Аналогично вводится понятие поверхности уровня для функции трех переменных u = f (x, y, z), (f (x, y, z) = C).

Уравнение линии уровня через точку

Пример 2. Найти поверхности уровня функции u = x 2 + y 2 + z 2 .

Решение. Пусть u = C. Тогда x 2 + y 2 + z 2 = C (C ≥ 0) — это множество сфер с центром в точке O(0; 0; 0) и радиусом C.

Поверхности второго порядка

Наиболее изучены поверхности в курсе аналитической геометрии — поверхности второго порядка. В общем случае уравнение такой поверхности имеет вид:
a11 x 2 + 2a12 xy + a22 y 2 + 2a13 xz + 2a23 yz + a33 z 2 + 2a14 x + 2a24 y + 2a34 z + a44 = 0.

В зависимости от значений коэффициентов Уравнение линии уровня через точкуполучают различные поверхности второго порядка.

Например:
1) Уравнение линии уровня через точку— конус;

Уравнение линии уровня через точку

2) Уравнение линии уровня через точку— полусфера;

Уравнение линии уровня через точку
Рис. 4.

3) Уравнение линии уровня через точку— эллиптический параболоид;

Уравнение линии уровня через точку
Рис. 5.

4) Уравнение линии уровня через точку— гиперболический параболоид;
Уравнение линии уровня через точку
рис.6

5) Уравнение линии уровня через точку— трехосный эллипсоид.

Уравнение линии уровня через точку
Рис. 7.

Для изучения поверхностей в трехмерном пространстве применяется метод сечений. Суть этого метода такова: пересекаем заданную поверхность плоскостями x = C1, y = C2, z = C3. В результате получим некоторые кривые, характеризующие поверхность.

Пример 3. z = x 2 + y 2 . Пусть z = C1 (C1 ≥ 0). Получим уравнение x 2 + y 2 = C1 (уравнение окружности). Положим y = C2 , тогда Уравнение линии уровня через точку— уравнение параболы в плоскости Оxz, которая смещена на Уравнение линии уровня через точкуединиц вверх по оси Oz. Положим x = C3 , получим уравнение
Уравнение линии уровня через точкуПолучили уравнение параболы в плоскости Оyz, которая смещена на Уравнение линии уровня через точкуединиц вверх по оси Оz. Из этих исследований вытекает, что графиком функции z = x 2 + y 2 является параболоид вращения вокруг оси Оz.

Видео:Математика без Ху!ни. Функции нескольких переменных. Область определения. Линии уровня.Скачать

Математика без Ху!ни. Функции нескольких переменных. Область определения. Линии уровня.

Гиперповерхности уровня

Пусть задана функция от n переменных u = f (x1, x2, . xn) . Если положить u = C, то получим уравнение f (x1, x2, . xn) = C, которое называется уравнением гиперповерхности уровня в пространстве R n . Например: Уравнение линии уровня через точкуЕсли u = C, то уравнение Уравнение линии уровня через точкуявляется уравнением гиперсферы в R n с центром в точке O (0,0, . 0) и радиусом Уравнение линии уровня через точку.

Присылайте задания в любое время дня и ночи в ➔ Уравнение линии уровня через точкуУравнение линии уровня через точку

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:1 Линии уровняСкачать

1 Линии уровня

5.6. Производная по направлению. Градиент. Линии уровня функции

Определение. Предел отношения Уравнение линии уровня через точку, если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .

Обозначение. Уравнение линии уровня через точку

Уравнение линии уровня через точку

Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:

Уравнение линии уровня через точку(8)

Где Cos И Cos — направляющие косинусы вектора L.

Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).

Решение. Найдем единичный вектор L, имеющий данное направление:

Уравнение линии уровня через точку

Откуда Cos=Уравнение линии уровня через точку; Cos=-Уравнение линии уровня через точку.

Вычислим частные производные функции в точке М(1; 2):

Уравнение линии уровня через точку

По формуле (8) получим Уравнение линии уровня через точку

Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).

Решение. Найдем вектор Уравнение линии уровня через точкуи его направляющие косинусы:

Уравнение линии уровня через точку

Вычислим значения частных производных в точке М:

Уравнение линии уровня через точку

Следовательно, Уравнение линии уровня через точку

Определение. Градиентом Функции Z=F(M) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным Уравнение линии уровня через точкуиУравнение линии уровня через точку, взятым в точке М(х; у).

Обозначение. Уравнение линии уровня через точку

Решение. Находим частные производные: Уравнение линии уровня через точкуи их значения в точке М(2; -1):

Уравнение линии уровня через точку

Пример 49. Найти величину и направление градиента функции Уравнение линии уровня через точкув точке Уравнение линии уровня через точку

Решение. Найдем частные производные и вычислим их значения в точке М:

Уравнение линии уровня через точку

Уравнение линии уровня через точку

Уравнение линии уровня через точку

Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы

Уравнение линии уровня через точку

Вводится понятие градиента Уравнение линии уровня через точку

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

Уравнение линии уровня через точку

1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X0, Y0). Рассмотрим график функции. Через точку (X0, Y0, F(X0, Y0)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X0, Y0, F(X0, Y0)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:

Уравнение линии уровня через точку

Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой — лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.

Определение. Множество линий уровня называют Картой линий уровня.

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.

Уравнение линии уровня через точку
Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро — и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

Т. е. определяют линию уровня функции:

Уравнение линии уровня через точку

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Видео:Видеоурок "Нормальное уравнение прямой"Скачать

Видеоурок "Нормальное уравнение прямой"

Компьютерный чертеж. Выполним

Линии уровня и градиент функции двух переменных

Линией уровня функции называется множество точек из области определения на плоскости , для которых значение функции постоянно и равно , то есть

Построить график функции . Записать уравнение линии уровня, проходящей через точку .

Графиком линейной функции двух переменных является плоскость в пространстве. Для функции график представляет собой плоскость, проходящую через точки , , .

Линиями уровня функции являются параллельные прямые, уравнение которых или или .

Найдем уравнение линии уровня, проходящей через точку , для этого подставим координаты точки в уравнение и найдем значение параметра :

уравнение линии уровня, проходящей через точку имеет вид

🎬 Видео

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Линии уровня и поверхности уровня функции многих переменныхСкачать

Линии уровня и поверхности уровня функции многих переменных

2. Область определения функции двух переменныхСкачать

2. Область определения функции двух переменных

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Линии уровняСкачать

Линии уровня

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

10. ФНП. Градиент и производная по направлению функции двух переменных.Скачать

10. ФНП. Градиент и производная по направлению функции двух переменных.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Уравнение прямой на плоскости. Решение задачСкачать

Уравнение прямой на плоскости. Решение задач

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры
Поделиться или сохранить к себе: