Видео:Занятие 1. График линейной функции y=kx+bСкачать
Линейная функция
Линейной функцией называют функцию, заданную формулой
y = kx + b,
(1)
где k и b – произвольные (вещественные) числа.
При любых значениях k и b графиком линейной функции является прямая линия .
Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
График линейной функции
При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.
Рис.1
Рис.2
Рис.3
При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.
Рис.4
Рис.5
Рис.6
При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.
ky = kx + b1 и y = kx + b2 ,
имеющие одинаковые угловые коэффициенты и разные свободные члены, параллельны .
имеющие разные угловые коэффициенты, пересекаются при любых значениях свободных членов.
y = kx + b1 и
перпендикулярны при любых значениях свободных членов.
Угловой коэффициент прямой линии
y = kx
(2)
равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).
Рис.10
Рис.11
Рис.12
Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .
При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле
Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Прямые, параллельные оси ординат
Прямые, параллельные оси Oy , задаются формулой
x = c ,
(3)
где c – произвольное число, и изображены на рис. 13, 14, 15.
Рис.13
Рис.14
Рис.15
Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;
Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
px + qy = r ,
(4)
где p, q, r – произвольные числа.
В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .
что и требовалось.
В случае, когда получаем:
откуда вытекает, что уравнение (4) задает прямую линию вида (3).
В случае, когда q = 0, p = 0, уравнение (4) имеет вид
0 = r ,
(5)
и при r = 0 его решением являются точки всей плоскости:
В случае, когда уравнение (5) решений вообще не имеет.
Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением
px + qy = r1 ,
(6)
параллельна прямой, заданной уравнением (4) .
Замечание 3 . При любом значении r2 прямая линия, заданная уравнением
– qx + py = r2 ,
(7)
перпендикулярна прямой, заданной уравнением (4) .
Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и
параллельной к прямой
4x + 5y = 7 ;
(8)
перпендикулярной к прямой (8).
В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде
4x + 5y = r1 ,
(9)
где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство
Итак, уравнение прямой, параллельной к прямой
В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде
– 5x + 4y = r2 ,
(10)
где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство
Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
График линейной функции прямая параллельная оси ординат
Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать
Прямые на координатной плоскости
Линейная функция
График линейной функции
Прямые, параллельные оси ординат
Уравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
Видео:ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать
Линейная функция
Линейной функцией называют функцию, заданную формулой
y = kx + b,
(1)
где k и b – произвольные (вещественные) числа.
При любых значениях k и b графиком линейной функции является прямая линия .
Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .
Видео:Линейная функция и ее график. 7 класс.Скачать
График линейной функции
При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.
Рис.1
Рис.2
Рис.3
При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.
Рис.4
Рис.5
Рис.6
При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.
ky = kx + b1 и y = kx + b2 ,
имеющие одинаковые угловые коэффициенты и разные свободные члены, параллельны .
имеющие разные угловые коэффициенты, пересекаются при любых значениях свободных членов.
y = kx + b1 и
перпендикулярны при любых значениях свободных членов.
Угловой коэффициент прямой линии
y = kx
(2)
равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).
Рис.10
Рис.11
Рис.12
Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .
При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле
где c – произвольное число, и изображены на рис. 13, 14, 15.
Рис.13
Рис.14
Рис.15
Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;
Видео:7 класс. Задайте формулой линейную функцию, параллельную данной и проходящую через точку NСкачать
Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
px + qy = r ,
(4)
где p, q, r – произвольные числа.
В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .
что и требовалось.
В случае, когда получаем:
откуда вытекает, что уравнение (4) задает прямую линию вида (3).
В случае, когда q = 0, p = 0, уравнение (4) имеет вид
0 = r ,
(5)
и при r = 0 его решением являются точки всей плоскости:
В случае, когда уравнение (5) решений вообще не имеет.
Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением
px + qy = r1 ,
(6)
параллельна прямой, заданной уравнением (4) .
Замечание 3 . При любом значении r2 прямая линия, заданная уравнением
– qx + py = r2 ,
(7)
перпендикулярна прямой, заданной уравнением (4) .
Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и
параллельной к прямой
4x + 5y = 7 ;
(8)
перпендикулярной к прямой (8).
В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде
4x + 5y = r1 ,
(9)
где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство
Итак, уравнение прямой, параллельной к прямой
В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде
– 5x + 4y = r2 ,
(10)
где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Линейная функция, ее свойства и график
теория по математике 📈 функции
Функция, заданная формулой y=kx+b, где х – переменная, k и b – некоторые числа, называется линейной функцией. Переменную х называют независимой переменной, переменную у – зависимой переменной.
Графиком линейной функции является прямая. Для построения прямой достаточно взять два значения х, чтобы получить два значения у и, соответственно, две точки, через которые проходит единственная прямая.
Число k называется угловым коэффициентом прямой.
Видео:Формула линейной функции по ее графикуСкачать
Свойства линейной функции
Область определения функции – множество всех действительных чисел. То есть в данную формулу мы можем подставлять любое значение х.
Областью значений также является множество всех действительных чисел.
Функция не имеет ни наибольших, ни наименьших значений.
При k – положительном, угол наклона к оси х острый, другими словами – график функции возрастает.
При k отрицательном угол наклона к оси х тупой, то есть график функции – убывает.
При k=0 прямая параллельна оси х.
Частный случай линейной функции: y=kx, где число b=0, эту функцию называют прямой пропорциональностью, график такой функции проходит через начало координат.
Рассмотрим на примерах расположение прямых в координатной плоскости в зависимости от значения чисел k и b.
Пример №1
Построить график функции у=2х – 1. Для того, чтобы удобнее было выполнять вычисления, построение и т.д. сделаем таблицу для значений х и у:
х
у
Для построения графика подбираем два значения х, одно из них желательно брать равное нулю, второе, например 3 (подбираем небольшие числа).
х
0
3
у
Теперь подставляем значения х в формулу и вычисляем соответствующие значения у:
у=2х – 1=2 × 0 – 1= –1;
у=2х – 1=2 × 3 – 1= 5.
Вписываем в таблицу значения у:
х
0
3
у
–1
5
Теперь строим систему координат, отмечаем в ней точки с координатами А(0; –1) и В(3;5),
Проводимость — способность живой ткани проводить возбуждение.
Итак, по формуле мы видим, что угловой коэффициент — положительный, значит, график – возрастает, что мы и видим на нашем графике.
Пример №2.
Построить график функции у= –3х+4. Итак, делаем таблицу на два значения, например, возьмем 0 и 2.
х
0
2
у
4
–2
По формуле видим, что угловой коэффициент отрицательный, значит, прямая будет убывать. Строим убывающую прямую в системе координат через две точки А(0;4) и В(2; –2).
Пример №3
Построить график функции у=4. Видим, что в данном случае число х=0, значит, прямая будет проходить через точку с координатой (0;4) параллельно оси х. На графике это выглядит следующим образом:
Построить график функции у=3х. Данная функция является частным случаем, когда прямая проходит через начало координат. Поэтому в данном случае можно взять устно одно значение х, например 2, тогда у получим равный 6. Таким образом, имеем две точки (2;6) и (0;0). Строим их в системе координат и проводим через них прямую, которая будет возрастать, так как угловой коэффициент равен 3, т.е. положительный.
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ассмотрим коэффициенты под №3. Если k 90 0 ) угол с положит.направлением оси абсцисс (Ох). Если b 0. Это соответствует оставшимся графикам А и Б, т.к. они оба наклонены к положительно направлению оси Оx под острым углом ( 0 ). Следовательно, выбор соответствия должен быть выполнен по коэффициенту b.
В 1-й паре коэффициентов b 0, что соответствует графику А, который пересекает ось Оу выше начала координат. Это подтверждает, что и оставшаяся пара А–2 тоже верна.
Линейной функцией называется функция, заданная формулой y = kx + b , где k и b — любые действительные числа. Графиком линейной функции является прямая.
Если k = 0, то функция y = b называется постоянной. Её графиком, является прямая, параллельная оси Ox. Если b = 0, то формула y = kx задает прямо пропорциональную зависимость. Графиком такой функции является прямая, проходящая через начало координат.
Верно и обратное — любая прямая, не параллельная оси Oy, является графиком некоторой линейной функции.
Построить график линейной функции очень легко. Положение любой прямой однозначно определяется заданием двух её точек. Поэтому линейная функция вполне определяется заданием её значений для двух значений аргумента. Например,
x
0
1
y
b
k + b
Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.
Свойства линейной функции при k ≠ 0, b ≠ 0. 1) Область определения функции — множество всех действительных чисел: R или (−∞; ∞). 2) Функция y = kx + b ни четна, ни нечетна. 3) При k > 0 функция монотонно возрастает, а при k Упражнение: На рисунке представлены 4 прямые линии. Могут ли они являться графиками функций? Если да, то определите каких.
Прямые, наклоненные к оси абсцисс под острым или тупым углом — графики линейной функции общего вида: y = kx + b. Параметр b легко определить по точке пересечения линии с осью ординат (Oy). Параметр k определяется построеним по клеточкам треугольника, содержащего угол α для острых углов или смежный с ним — для тупых. Точные ответы на рисунке. Прямая, параллельная оси абсцисс (здесь — горизонтальная линия), является графиком частного вида линейной функции y = b, который называют постоянной или константой. Значение этой функции не изменяется, поэтому ординаты точки графика всегда находятся на одной высоте относительно оси Ox.
Следующая прямая линия НЕ является графиком какой-либо функции. Здесь нет однозначности. Если x = 6, то y = ? Любому действительному числу! Т.е., для неё не удовлетворяется определение функции, а именно условие, что каждому значению аргумента x должно соответствовать единственное значение функции y. Но такие линии нам тоже встречаются, например, в качестве вертикальных асимптот. Поэтому нужно знать, что их уравнение x = a, где а — заданное число.
Видео:Вариант 51, № 7. Нахождение k и b линейной функции y=kx+b. Пример 1Скачать
Видеоуроки для подготовки к ОГЭ по математике. 9 класс.
Подробное исследование коэффициентов линейной функции.
Примеры решения заданий ОГЭ по математике.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru
Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:
Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный способ.
Графический способ — наглядно. Его мы и разберем в этой статье.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Видео:Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
если х = 0, то у = -2;
если х = 2, то у = -1;
если х = 4, то у = 0 и т. д.
Для удобства результаты можно оформлять в виде таблицы:
х
0
2
4
y
-2
-1
0
Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.
Функция
Коэффициент k
Коэффициент b
y = 2x + 8
k = 2
b = 8
y = −x + 3
k = −1
b = 3
y = 1/8x − 1
k = 1/8
b = −1
y = 0,2x
k = 0,2
b = 0
Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.
Видео:Линейная функция и её график. Алгебра, 7 классСкачать
Свойства линейной функции
Область определения функции — множество всех действительных чисел.
Множеством значений функции является множество всех действительных чисел.
График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
Функция не имеет ни наибольшего, ни наименьшего значений.
Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит, y = b — четная;
b = 0, k ≠ 0, значит, y = kx — нечетная;
b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;
b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.
Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
График функции пересекает оси координат:
ось абсцисс ОХ — в точке (−b/k; 0);
ось ординат OY — в точке (0; b).
x = −b/k — является нулем функции.
Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).
При k 0, то этот угол острый, если k
Видео:Алгебра 9 класс (Урок№13 - Дробно-линейная функция и её график.)Скачать
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
если k > 0, то график наклонен вправо;
если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
если b 0, то график функции y = kx + b выглядит так:
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Если k > 0 и b
В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.
Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.
Например, график уравнения х = 3:
Условие параллельности двух прямых:
График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.
Условие перпендикулярности двух прямых:
График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.
Точки пересечения графика функции y = kx + b с осями координат:
С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b).
С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.
Координаты точки пересечения с осью OX: (−b/k; 0).
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.