Уравнение кривой проходящей через три точки

Содержание
  1. Уравнение по трем точкам: как найти вершину параболы, формула
  2. Начало поиска
  3. Расчет коэффициентов и основных точек параболы
  4. Численное значение координаты вершины на оси абсцисс
  5. Значение вершины на оси ординат
  6. Построение кривой параболического типа
  7. Наглядные примеры
  8. Вывод
  9. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой
  10. Как найти уравнение плоскости, которая проходит через 3 заданные точки
  11. Примеры задач на составление уравнения плоскости, проходящих через 3 точки
  12. Кривые второго порядка
  13. Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:
  14. Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.
  15. Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.
  16. Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.
  17. 🔍 Видео

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Уравнение по трем точкам: как найти вершину параболы, формула

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье….

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Уравнение кривой проходящей через три точки

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая параллельная оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы. Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

Уравнение кривой проходящей через три точки(1).

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Уравнение кривой проходящей через три точки(2).

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! Первый признак равенства треугольников: доказательство

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Уравнение кривой проходящей через три точки(3).

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Уравнение кривой проходящей через три точки(4).

Это интересно! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Уравнение кривой проходящей через три точки.

Отсюда можно сделать вывод, что в случае если а&lt,0, то вершина кривой будет находиться в верхней полуплоскости, в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

Уравнение кривой проходящей через три точки(5.1).

Уравнение кривой проходящей через три точки(5.2).

Уравнение кривой проходящей через три точки(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А ( Уравнение кривой проходящей через три точки, B Уравнение кривой проходящей через три точки(, C ( Уравнение кривой проходящей через три точки. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Уравнение кривой проходящей через три точки(6).

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Уравнение кривой проходящей через три точки

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10, 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

Получается, что координаты на вершине, в точке О, следующие (-1,25, -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2,3), B (3,5), C (6,2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

Используя полученные значения, получим следующие уравнение:

Уравнение кривой проходящей через три точки

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Уравнение кривой проходящей через три точки

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a&lt,0, то ветки» будут направлены вниз. При a&gt,1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c&gt,0, то парабола «ползет» вверх, в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Уравнение кривой проходящей через три точки

Если коэффициент b&gt,0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Видео:Видеоурок "Уравнение плоскости по трем точкам"Скачать

Видеоурок "Уравнение плоскости по трем точкам"

Как найти уравнение плоскости, которая проходит через 3 заданные точки

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A ( x — x 1 ) + B ( y — y 1 ) + C ( z — z 1 ) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 ( x 1 , y 1 , z 1 ) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) а M 1 M 3 → = x 3 — x 1 , y 3 — y 1 , z 3 — z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) будут компланарными.

На схеме это будет выглядеть так:

Уравнение кривой проходящей через три точки

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) .

Запишем полученное уравнение в координатной форме:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Есть три точки, не лежащие на одной прямой, с координатами M 1 ( — 3 , 2 , — 1 ) , M 2 ( — 1 , 2 , 4 ) , M 3 ( 3 , 3 , — 1 ) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = — 1 — — 3 , 2 — 2 , 4 — — 1 ⇔ M 1 M 2 → = ( 2 , 0 , 5 ) M 1 M 3 → = 3 — — 3 , 3 — 2 , — 1 — — 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = — 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( — 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( — 3 , 2 , — 1 ) , и записать уравнение для плоскости с вектором n → = ( — 5 , 30 , 2 ) . Мы получим, что: — 5 · ( x — ( — 3 ) ) + 30 · ( y — 2 ) + 2 · ( z — ( — 1 ) ) = 0 ⇔ — 5 x + 30 y + 2 z — 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = — 3 , y 1 = 2 , z 1 = — 1 , x 2 = — 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = — 1 , в итоге мы получим:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = x — ( — 3 ) y — 2 z — ( — 1 ) — 1 — ( — 3 ) 2 — 2 4 — ( — 1 ) 3 — ( — 3 ) 3 — 2 — 1 — ( — 1 ) = = x + 3 y — 2 z + 1 2 0 5 6 1 0 = — 5 x + 30 y + 2 z — 73

Мы получили нужное нам уравнение.

Ответ: — 5 x + 30 y + 2 z — 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = ( — 4 , 6 , 2 ) , M 1 M 3 → = — 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → — 4 6 2 — 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 5 y — ( — 8 ) z — ( — 2 ) 1 — 5 — 2 — ( — 8 ) 0 — ( — 2 ) — 1 — 5 1 — ( — 8 ) 1 — ( — 2 ) = 0 ⇔ ⇔ x — 5 y + 8 z + 2 — 4 6 2 — 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 ( x 4 , y 4 , z 4 ) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Кривые второго порядка

Видео:Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Уравнение кривой проходящей через три точки

Видео:№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известноСкачать

№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известно

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:

Видео:Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.Скачать

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.

Уравнение кривой проходящей через три точки

Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.

Видео:Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Уравнение кривой проходящей через три точки

или можно встретить следующую форму записи:

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнение кривой проходящей через три точки

К кривым второго порядка относятся окружность, эллипс, гипербола и парабола.

Покажем на примере определение значений коэффициентов.

Уравнение кривой проходящей через три точки

Рассмотрим кривую второго порядка:

Видео:§41 Уравнение плоскости, проходящей через три данные плоскостиСкачать

§41 Уравнение плоскости, проходящей через три данные плоскости

Уравнение кривой проходящей через три точки

Вычислим определитель из коэффициентов:

Уравнение кривой проходящей через три точки

Если Δ = 0, кривая второго порядка параболического типа,

если Δ > 0, кривая второго порядка эллиптического типа,

если Δ F1 и F2 — фокусы.

Уравнение кривой проходящей через три точки

с — фокальное расстояние,

Уравнение кривой проходящей через три точки

Каноническое уравнение эллипса с центром симметрии в начале координат:

Уравнение кривой проходящей через три точки

2а — большая ось эллипса, 2b — малая ось эллипса.

а — большая полуось эллипса, b — малая полуось эллипса.

Если a = b, то имеем окружность с радиусов R = a = b:

Уравнение кривой проходящей через три точки

Если центр эллипса находится не в начале координат, а в некоторой точке C(x0;y0), оси эллипса параллельны осям координат, то каноническое уравнение эллипса имеет вид:

Уравнение кривой проходящей через три точки

Эксцентриситет — число, равное отношению фокального расстояния к большей полуоси:

Уравнение кривой проходящей через три точки

Эксцентриситет характеризует отклонение эллипса от окружности, т.е. чем эксцентриситет больше, тем эллипс более сплющен, вытянут.

Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.

Уравнение кривой проходящей через три точки

Уравнение кривой проходящей через три точки

с — фокальное расстояние,

Уравнение кривой проходящей через три точки

Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.

Каноническое уравнение гиперболы с центром симметрии в начале координат:

Уравнение кривой проходящей через три точки

x — действительная ось, y — мнимая ось.

а — действительная полуось, b — мнимая полуось.

Если центр гиперболы находится в некоторой точке C(x0;y0), оси симметрии параллельны осям координат, то каноническое уравнение имеет вид:

Уравнение кривой проходящей через три точки

Эксцентриситет гиперболы — число, равное отношению фокусного расстояния к действительной полуоси.

Уравнение кривой проходящей через три точки

Чем эксцентриситет меньше, тем гипербола более вытянута, сплюшена вдоль оси Ох.

Директриса гиперболы — прямые, параллельные мнимой оси гиперболы и отстоящая от нее на расстоянии a/Ε.

f1 — правая директриса, f2 — левая директриса.

Уравнение кривой проходящей через три точки

Порядок построения гиперболы :

1. Строим прямоугольник со сторонами 2a и 2b.

Уравнение кривой проходящей через три точки

2. Провести асимптоты гиперболы — диагонали построенного прямоугольника.

Уравнение кривой проходящей через три точки

3. Строим гиперболу с вершинами в точках А 1 (-а;0), А 2 (а;0).

Уравнение кривой проходящей через три точки
Уравнение кривой проходящей через три точкиУравнение кривой проходящей через три точки

Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.

F — фокус параболы, f — директриса параболы.

🔍 Видео

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)Скачать

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры
Поделиться или сохранить к себе: