Уравнение кривой по трем точкам

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Уравнение кривой по трем точкам

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Уравнение кривой по трем точкам
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Уравнение кривой по трем точкамназывается уравнением фигуры, если Уравнение кривой по трем точкам, то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Уравнение кривой по трем точкам, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Уравнение кривой по трем точками надо построить фигуру Ф, уравнением которой является Уравнение кривой по трем точкам;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Уравнение кривой по трем точками решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Видео:Видеоурок "Уравнение плоскости по трем точкам"Скачать

Видеоурок "Уравнение плоскости по трем точкам"

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Уравнение кривой по трем точкам, есть величина постоянная (большая, чем расстояние между Уравнение кривой по трем точкам).

Точки Уравнение кривой по трем точкамназываются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Уравнение кривой по трем точкам(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Уравнение кривой по трем точкамкоординаты которой задаются формулами Уравнение кривой по трем точкамбудет окружность (4) переводить в эллипс, заданный соотношением Уравнение кривой по трем точкам

Число Уравнение кривой по трем точкамназывается эксцентриситетом эллипса. Эксцентриситет Уравнение кривой по трем точкамхарактеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Уравнение кривой по трем точкамстановится более вытянутым

Уравнение кривой по трем точкам

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Уравнение кривой по трем точкам. Их длины Уравнение кривой по трем точками Уравнение кривой по трем точкамзадаются формулами Уравнение кривой по трем точкамПрямые Уравнение кривой по трем точкамназываются директрисами эллипса. Директриса Уравнение кривой по трем точкамназывается левой, а Уравнение кривой по трем точкам— правой. Так как для эллипса Уравнение кривой по трем точками, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Уравнение кривой по трем точкам

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Уравнение кривой по трем точкаместь величина постоянная (не равная нулю и меньшая, чем расстояние между Уравнение кривой по трем точкам).

Точки Уравнение кривой по трем точкамназываются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Уравнение кривой по трем точкамобозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть Уравнение кривой по трем точкам. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Уравнение кривой по трем точкам.

Уравнение кривой по трем точкам

Тогда Уравнение кривой по трем точкамА расстояние Уравнение кривой по трем точкамПодставив в формулу r=d, будем иметьУравнение кривой по трем точкам. Возведя обе части равенства в квадрат, получимУравнение кривой по трем точкам

Уравнение кривой по трем точкамили

Уравнение кривой по трем точкам(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Уравнение кривой по трем точкамтакже определяют параболы.

Легко показать, что уравнение Уравнение кривой по трем точкам, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Уравнение кривой по трем точкамО. Для этого выделим полный квадрат:

Уравнение кривой по трем точкам

и сделаем параллельный перенос по формуламУравнение кривой по трем точкамУравнение кривой по трем точкам

В новых координатах преобразуемое уравнение примет вид: Уравнение кривой по трем точкамгде р — положительное число, определяется равенством Уравнение кривой по трем точкам.

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюУравнение кривой по трем точкам, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюУравнение кривой по трем точкам, запишем это равенство с помощью координат: Уравнение кривой по трем точкам Уравнение кривой по трем точкам, или после упрощения Уравнение кривой по трем точкам. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Уравнение кривой по трем точкам

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Уравнение кривой по трем точкам

где коэффициенты А, В и С не равны одновременно нулю Уравнение кривой по трем точкам

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Уравнение кривой по трем точкамкоторое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Уравнение кривой по трем точкам— мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки Уравнение кривой по трем точкамназывают вершинами эллипса, а Уравнение кривой по трем точкам— его фокусами (рис. 12).

Уравнение кривой по трем точкам

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Уравнение кривой по трем точками определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Уравнение кривой по трем точкам

Эксцентриситет изменяется от нуля до единицы Уравнение кривой по трем точками характеризует форму эллипса. Для окружности Уравнение кривой по трем точкамЧем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Уравнение кривой по трем точкам

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам— каноническое уравнение эллипса с центром в точке Уравнение кривой по трем точкамбольшей полуосью а=3 и меньшей полуосью Уравнение кривой по трем точкам

Найдем эксцентриситет эллипса:

Уравнение кривой по трем точкам

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Уравнение кривой по трем точкама оси Уравнение кривой по трем точкампараллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Уравнение кривой по трем точкам

В новой системе координат координаты Уравнение кривой по трем точкамвершин и фокусов гиперболы будут следующими:

Уравнение кривой по трем точкам

Переходя к старым координатам, получим:

Уравнение кривой по трем точкам

Построим график эллипса.

Уравнение кривой по трем точкамЗадача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнения кривых.

В аналитической геометрии всякому уравнению вида F(x; у) = 0 может соответствовать некоторая линия, свойства которой определяются данным уравнением.

Под F(x; у) = 0 понимаем многочлен степени n; степень многочлена n – порядок линии.

Значит, кривая первого порядка, в декартовой системе координат, описывается алгебраическим уравнением первого порядка ax + by + c = 0, где хотя бы один из коэффициентов a или b отличен от нуля. Это уравнение называют также линейным уравнением. А само выражение, типа ax+by+c=0 и a 2 +b 2 ≠ 0, принято обозначать как общее уравнение прямой.

Следовательно, любая прямая на плоскости представляет собой алгебраическую кривую первого порядка и любая алгебраическая кривая первого порядка на плоскости есть прямая.

Общее уравнение кривой второго порядка в декартовых координатах имеет вид:

причем, в зависимости от значения произведение аb получаем:

— эллипс, частный случай — окружность ( когда ab > 0);

Видео:11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Уравнение по трем точкам: как найти вершину параболы, формула

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье….

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Уравнение кривой по трем точкам

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая параллельная оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы. Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

Уравнение кривой по трем точкам(1).

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Уравнение кривой по трем точкам(2).

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! Первый признак равенства треугольников: доказательство

Видео:Репетитор по математике пишет уравнение плоскости по трем точкамСкачать

Репетитор по математике пишет уравнение плоскости по трем точкам

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Уравнение кривой по трем точкам(3).

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Уравнение кривой по трем точкам(4).

Это интересно! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Уравнение кривой по трем точкам.

Отсюда можно сделать вывод, что в случае если а&lt,0, то вершина кривой будет находиться в верхней полуплоскости, в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

Уравнение кривой по трем точкам(5.1).

Уравнение кривой по трем точкам(5.2).

Уравнение кривой по трем точкам(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А ( Уравнение кривой по трем точкам, B Уравнение кривой по трем точкам(, C ( Уравнение кривой по трем точкам. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Уравнение кривой по трем точкам(6).

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Уравнение кривой по трем точкам

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10, 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам

Получается, что координаты на вершине, в точке О, следующие (-1,25, -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2,3), B (3,5), C (6,2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам

Уравнение кривой по трем точкам

Используя полученные значения, получим следующие уравнение:

Уравнение кривой по трем точкам

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Уравнение кривой по трем точкам

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a&lt,0, то ветки» будут направлены вниз. При a&gt,1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c&gt,0, то парабола «ползет» вверх, в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Уравнение кривой по трем точкам

Если коэффициент b&gt,0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Видео:Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать

Уравнения касательной и нормали к кривой, заданной в неявном виде

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

📺 Видео

Уравнение прямой по двум точкамСкачать

Уравнение прямой по двум точкам

Метод координат Урок №2 2 Нахождение уравнения плоскости по трем точкамСкачать

Метод координат  Урок №2 2  Нахождение уравнения плоскости по трем точкам

Как написать уравнения касательной и нормали | МатематикаСкачать

Как написать уравнения касательной и нормали | Математика

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Уравнение плоскости по трем точкамСкачать

Уравнение плоскости по трем точкам
Поделиться или сохранить к себе: