Содержание:
Видео:Построение кривой в полярной системе координатСкачать

Преобразования декартовой системы координат
Параллельный перенос и поворот системы координат
1. Параллельный перенос системы координат. Пусть на плоскости две декартовы системы координат, причем соответствующие оси параллельны и сонаправлены (Рис.46):
Рис. 46. Параллельный перенос одной системы координат относительно другой системы.
Систему координат
Пример:
Дана точка М(3;2) и начало новой системы координат 
Решение:
Используя формулы, определяющие параллельный перенос одной системы отсчета относительно другой, получим 
2. Поворот системы координат. Пусть даны две системы координат (старая и новая), имеющие общее начало отсчета и повернутые относительно друг друга на угол 
Рис. 47. Поворот одной системы координат относительно другой системы с общим началом координат двух систем.
Получим формулы, связывающие старые и новые координаты произвольной точки М(х; у). Из рисунка видно, что в новой системе координат координаты точки равны 



Найдем обратное преобразование системы координат, найдем матрицу 
Найдем алгебраические дополнения всех элементов

Определение: Унитарными преобразованиями называются такие преобразования, для которых определитель матрицы преобразования равен 1.
Определение: Ортогональными преобразованиями называются такие преобразования, для которых обратная матрица к матрице преобразования совпадает с транспонированной матрицей преобразования.
Таким образом, имеем 
Пример:
Найти координаты точки М(1; 2) в новой системе координат, повернутой относительно старой системы отсчета на угол
Решение:
Воспользуемся полученными формулами 
Рассмотрим применение преобразования координат:
а) Преобразовать уравнение параболы 







Пример:
Преобразовать уравнение параболы 
Решение:
Найдем начало отсчета новой системы координат после параллельного переноса 




б) Выяснить, какую кривую описывает функция
Проведем следующее преобразование 



Полярные координаты. Замечательные кривые
Пусть полярная ось совпадает с осью абсцисс Ох, а начало полярной оси (полюс полярной системы координат) совпадает с началом координат декартовой системы отсчета (Рис. 48). Любая точка М(х;у) в полярной системе координат характеризуется длиной радиус-вектора, соединяющего эту точку с началом отсчета и углом 
Рис. 48. Полярная система координат.
Главными значениями угла 

Рассмотрим замечательные кривые в полярной системе координат:
1. Спираль Архимеда 


Рис. 49. Спираль (улитка) Архимеда.
2. Уравнение окружности: уравнение 
Рис. 50. Окружность с центром в точке A(R; 0) и радиусом R.
3. Уравнение 
Рис. 51. Окружность с центром в точке А(0; R) и радиусом R.
4. Кардиоиды:
Рис. 52. Кардиоида
Рис. 53. Кардиоида
Аналогично выглядят кардиоиды 
5. Петля: 

Для первого корня у = 0, а для второго и третьего — у = 9 . Следовательно, петля имеет вид
| Рекомендую подробно изучить предметы: |
|
| Ещё лекции с примерами решения и объяснением: |
- Бесконечно малые и бесконечно большие функции
- Замечательные пределы
- Непрерывность функций и точки разрыва
- Точки разрыва и их классификация
- Экстремум функции
- Методы решения систем линейных алгебраических уравнений (СЛАУ)
- Скалярное произведение и его свойства
- Векторное и смешанное произведения векторов
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Уравнения кривых.
В аналитической геометрии всякому уравнению вида F(x; у) = 0 может соответствовать некоторая линия, свойства которой определяются данным уравнением.
Под F(x; у) = 0 понимаем многочлен степени n; степень многочлена n – порядок линии.
Значит, кривая первого порядка, в декартовой системе координат, описывается алгебраическим уравнением первого порядка ax + by + c = 0, где хотя бы один из коэффициентов a или b отличен от нуля. Это уравнение называют также линейным уравнением. А само выражение, типа ax+by+c=0 и a 2 +b 2 ≠ 0, принято обозначать как общее уравнение прямой.
Следовательно, любая прямая на плоскости представляет собой алгебраическую кривую первого порядка и любая алгебраическая кривая первого порядка на плоскости есть прямая.
Общее уравнение кривой второго порядка в декартовых координатах имеет вид:
причем, в зависимости от значения произведение аb получаем:
— эллипс, частный случай — окружность ( когда ab > 0);
Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Упражнения
1. Нарисуйте кривую, задаваемую уравнением r = sin 4 φ .
2. Нарисуйте кривую, задаваемую уравнением r = cos φ .
3. Для параболы x 2 = 4 ay выберем в качестве полярной оси луч, идущий по оси Oy с началом в фокусе F (0, a ) параболы. Переходя от декартовых к полярным координатам, покажите, что парабола с выколотой вершиной задается уравнением

4. Докажите, что уравнение

задает эллипс, если 0 

5. Нарисуйте спираль Архимеда, заданную уравнением r = — φ . Чему равно расстояние между соседними витками этой спирали?
6. Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет траектория его движения относительно земли?
7. Нарисуйте гиперболическую спираль , задаваемую уравнением r = 
8. Нарисуйте спираль Галилея , которая задается уравнением r = a 
9. Нарисуйте кривую, задаваемую уравнением r = | 
10. Нарисуйте кривую, задаваемую уравнением r = 
11. Нарисуйте кривую, задаваемую уравнением r = 
12. Найдите параметрические уравнения: а) спирали Архимеда; б) логарифмической спирали.
1. Березин В. Кардиоида //Квант. – 1977. № 12.
2. Березин В. Лемниската Бернулли //Квант. – 1977. № 1.
3. Берман Г.Н. Циклоида. – М.: Наука, 1975.
4. Бронштейн И. Эллипс. Гипербола. Парабола / Такая разная геометрия. Составитель А.А. Егоров. – М.: Бюро Квантум, 2001. — / Приложение к журналу «Квант» № 2/2001.
5. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые. – 3-е изд. – М.: МЦНМО, 2000.
6. Маркушевич А.И. Замечательные кривые. – М.- Л.: Гос. изд. течн. – теор. лит., 1951. — / Популярные лекции по математике, выпуск 4.
7. Савелов А.А. Плоские кривые. – М.: ФИЗМАТЛИТ, 1960.
8. Смирнова И.М., Смирнов В.А. Кривые. Курс по выбору. 9 класс. – М.: Мнемозина, 2007.
9. Смирнова И.М., Смирнов В.А. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2011.
10. Смирнова И.М., Смирнов В.А. Компьютер помогает геометрии. – М.: Дрофа, 2003.
📺 Видео
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Полярная система координатСкачать

Полярная система координатСкачать

§30 Уравнения кривых второго порядка в полярных координатахСкачать

Полярные в декартовыеСкачать

Площадь фигуры, заданной в полярной системе координатСкачать

Скорость и ускорение точки в полярных координатахСкачать

Полярная система координат.Скачать

Видеоурок "Полярная система координат"Скачать

§53 Связь между полярными и декартовыми координатамиСкачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Видеоурок "Преобразование координат"Скачать

Полярные координаты. Полярное уравнение эллипса.Скачать

Глаза гипножабы и площадь фигур в полярной системе координатСкачать

Вычисление кривизны плоской кривой в декартовых и полярных координатахСкачать

§55 Цилиндрическая система координатСкачать























