- п.1. Понятие арккосинуса
- п.2. График и свойства функции y=arccosx
- п.3. Уравнение cosx=a
- п.4. Формула арккосинуса отрицательного аргумента
- п.5. Примеры
- Косинус
- Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).
- Аргумент и значение
- Косинус острого угла
- Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.
- Косинус острого угла больше (0) и меньше (1)
- Косинус числа
- Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.
- Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.
- Косинус любого угла
- Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.
- Знаки косинуса по четвертям
- Связь с другими тригонометрическими функциями:
- Функция (y=cos)
- Уравнение косинус равен отрицательному числу
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- 📹 Видео
п.1. Понятие арккосинуса
В записи (y=cosx) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если (cosx=1), то (x=2pi k, kinmathbb); (cosx=0), то (x=fracpi2+pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: (0leq xleq pi) (верхняя половина числовой окружности).
(arccosfrac12=fracpi3, arccosleft(-frac<sqrt>right)=frac)
(arccos2) – не существует, т.к. 2> 1
п.2. График и свойства функции y=arccosx
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (0leq arccosxleq pi) . Область значений (yin[0;pi])
3. Максимальное значение (y_=pi) достигается в точке x =-1
Минимальное значение (y_=0) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.
п.3. Уравнение cosx=a
Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус? |
Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.
1) Решим уравнение (cosx=frac12).
Найдем точку (frac12) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (pmfracpi3) — это базовые корни.
Если взять верхний корень (fracpi3) и прибавить к нему полный оборот (fracpi3+2pi=frac), косинус полученного угла (cosfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi3+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (-fracpi3+2pi k).
Получаем ответ: (x=pmfracpi3+2pi k)
Заметим, что полученный ответ является записью вида
(x=pm arccosfrac12+2pi k)
А т.к. арккосинус для (frac12) точно известен и равен (fracpi3), то мы его и пишем в ответе.
Но так бывает далеко не всегда.
2) Решим уравнение (cosx=0,8)
Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках. По определению верхняя точка – это угол, равный arccos0,8. Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos0,8). Добавление или вычитание полных оборотов к каждому из решений даст другие корни. Получаем ответ: (x=pm arccos0,8+2pi k) |
п.4. Формула арккосинуса отрицательного аргумента
Докажем полезную на практике формулу для (arccos(-a)).
По построению: $$ begin angle DA’O=angle BAO=angle CAO=90^\ OD=OB=OC=1\ OA’=OA=a end Rightarrow $$ (по катету и гипотенузе) begin Delta DA’O=Delta BAO=Delta CAORightarrow\ Rightarrow angle DOC=angle A’OA-alpha+alpha=angle A’OA=180^=pi\ -arccosa+pi=arccos(-a) end |
п.5. Примеры
Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.
Для (y=arccosx) область определения (-1leq xleq 1), область значений (0leq yleq pi).
Обратная функция (y=cosx) должна иметь ограниченную область определения (0leq xleq pi) и область значений (-1leq yleq 1).
Строим графики:
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.
Пример 2. Решите уравнения:
a) (cos x=-1) (x=pi+2pi k) | б) (cos x=frac<sqrt>) (x=pmfracpi4+2pi k) |
в) (cos x=0) (x=pmfracpi2+2pi k=fracpi2+pi k) | г) (cos x=sqrt) (sqrtgt 1, xinvarnothing) Решений нет |
д) (cos x=0,7) (x=pm arccos(0,7)+2pi k) | e) (cos x=-0,2) (x=pm arccos(-0,2)+2pi k) |
Пример 3. Запишите в порядке возрастания: $$ arccos0,8; arccos(-0,5); arccosfracpi7 $$
Способ 1. Решение с помощью числовой окружности |
Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; (fracpi7approx 0,45)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: (angle A_1OAltangle A_2OAangle A_3OA)
$$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$
Отмечаем на оси OX аргументы 0,8; -0,5; (fracpi7approx 0,45). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; (fracpi7); -0,5.
И записываем арккосинусы по возрастанию: (arccos0,8lt arccosfracpi7lt arccos(-0,5))
Пример 4*. Решите уравнения:
(a) arccos(x^2-3x+3)=0) begin x^2-3x+3=cos0=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:
(б) arccos^2x-arccosx-6=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: $$ t^2-t-6=0Rightarrow (t-3)(t+2)=0Rightarrow left[ begin t_1=3\ t_2=-2lt 0 — text end right. $$ Возвращаемся к исходной переменной: begin arccosx=3\ x=cos3 end Ответ: cos3
(в) arccos^2x-pi arccosx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(pi^2)-4cdot frac=frac, sqrt=fracpi3\ left[ begin t_1=frac=fracpi3\ t_2=frac=frac end right. Rightarrow left[ begin arccosx_1=fracpi3\ arccosx_2=frac end right. Rightarrow left[ begin x_1=cosleft(fracpi3right)=frac12\ x_2=cosleft(fracright)=-frac12 end right. end Ответ: (left)
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Косинус
Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Аргумент и значение
Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Косинус острого угла
Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.
1) Пусть дан угол и нужно определить косинус этого угла.
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить косинус.
Косинус острого угла больше (0) и меньше (1)
Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.
Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать
Косинус числа
Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.
Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи : (frac) , (frac) , (-2π).
Например, для числа (frac) — косинус будет равен (frac<sqrt>) . А для числа (-) (frac) он будет равен (-) (frac<sqrt>) (приблизительно (-0,71)).
Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице .
Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Косинус любого угла
Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.
Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.
Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.
И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).
Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.
Стоит запомнить, что:
Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.
Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Знаки косинуса по четвертям
С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:
— там, где значения на оси от (0) до (1), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от (0) до (-1), косинус будет иметь знак минус (II и III четверти – фиолетовая область).
Пример. Определите знак (cos 1).
Решение: Найдем (1) на тригонометрическом круге. Будем отталкиваться от того, что (π=3,14). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).
Если провести перпендикуляр к оси косинусов, то станет очевидно, что (cos1) – положителен.
Ответ: плюс.
Видео:Отрицательный аргумент у тригонометрических функций [понять нельзя заучивать]Скачать
Связь с другими тригонометрическими функциями:
— синусом того же угла (или числа): основным тригонометрическим тождеством (sin^2x+cos^2x=1)
— тангенсом того же угла (или числа): формулой (1+tg^2x=) (frac)
— котангенсом и синусом того же угла (или числа): формулой (ctgx=) (frac<cos>)
Другие наиболее часто применяемые формулы смотри здесь .
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Функция (y=cos)
Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения косинуса, мы получим следующий график:
График данной функции называется косинусоида и обладает следующими свойствами:
— область определения – любое значение икса: (D(cos )=R)
— область значений – от (-1) до (1) включительно: (E(cos )=[-1;1])
— четная: (cos(-x)=cos)
— периодическая с периодом (2π): (cos(x+2π)=cos)
— точки пересечения с осями координат:
ось абсцисс: (() (frac) (+πn),(;0)), где (n ϵ Z)
ось ординат: ((0;1))
— промежутки знакопостоянства:
функция положительна на интервалах: ((-) (frac) (+2πn;) (frac) (+2πn)), где (n ϵ Z)
функция отрицательна на интервалах: (() (frac) (+2πn;) (frac) (+2πn)), где (n ϵ Z)
— промежутки возрастания и убывания:
функция возрастает на интервалах: ((π+2πn;2π+2πn)), где (n ϵ Z)
функция убывает на интервалах: ((2πn;π+2πn)), где (n ϵ Z)
— максимумы и минимумы функции:
функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)
функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).
Видео:Уравнение cos x=a | тригонометрическое уравнение | алгебра 10 класс | МегаШкола | Уравнение с cosxСкачать
Уравнение косинус равен отрицательному числу
Видео:Решение тригонометрических уравнений. 10 класс.Скачать
Методы решения тригонометрических уравнений.
Видео:Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать
1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Тригонометрическая окружность. Как выучить?Скачать
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Решение тригонометрических уравнений. Практическая часть. 10 класс.Скачать
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
Видео:Алгебра 10 класс. 20 октября. Полное решение cos t = aСкачать
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
📹 Видео
К10 Решение уравнения cos x = 1Скачать
Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать
Тригонометрические уравнения. Общие случаи для Синус и Косинус.Скачать
18+ Математика без Ху!ни. Формулы ПриведенияСкачать