Уравнение косинус икс равен минус а

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Немного теории.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Тригонометрические уравнения

Видео:Тригонометрические уравнения. Алгебра 10 класс. cos x = a.Скачать

Тригонометрические уравнения. Алгебра 10 класс. cos x = a.

Уравнение cos(х) = а

Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a

Видео:§33 Уравнение cos x = aСкачать

§33 Уравнение cos x = a

Уравнение sin(х) = а

Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а

Видео:Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а

Видео:Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 классСкачать

Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 класс

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Видео:Уравнение cosx =aСкачать

Уравнение cosx =a

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Видео:Уравнение sinx=aСкачать

Уравнение sinx=a

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем

Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи (y=cosx) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если (cosx=1), то (x=2pi k, kinmathbb); (cosx=0), то (x=fracpi2+pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: (0leq xleq pi) (верхняя половина числовой окружности).

(arccosfrac12=fracpi3, arccosleft(-frac<sqrt>right)=frac)
(arccos2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx

Уравнение косинус икс равен минус а
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (0leq arccosxleq pi) . Область значений (yin[0;pi])
3. Максимальное значение (y_=pi) достигается в точке x =-1
Минимальное значение (y_=0) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Уравнение косинус икс равен минус аЗначениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение (cosx=frac12).
Найдем точку (frac12) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (pmfracpi3) — это базовые корни.
Если взять верхний корень (fracpi3) и прибавить к нему полный оборот (fracpi3+2pi=frac), косинус полученного угла (cosfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi3+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (-fracpi3+2pi k).
Получаем ответ: (x=pmfracpi3+2pi k)

Заметим, что полученный ответ является записью вида
(x=pm arccosfrac12+2pi k)
А т.к. арккосинус для (frac12) точно известен и равен (fracpi3), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение (cosx=0,8)

Уравнение косинус икс равен минус аНайдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x=pm arccos0,8+2pi k)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для (arccos(-a)).

Уравнение косинус икс равен минус аПо построению: $$ begin angle DA’O=angle BAO=angle CAO=90^\ OD=OB=OC=1\ OA’=OA=a end Rightarrow $$ (по катету и гипотенузе) begin Delta DA’O=Delta BAO=Delta CAORightarrow\ Rightarrow angle DOC=angle A’OA-alpha+alpha=angle A’OA=180^=pi\ -arccosa+pi=arccos(-a) end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для (y=arccosx) область определения (-1leq xleq 1), область значений (0leq yleq pi).
Обратная функция (y=cosx) должна иметь ограниченную область определения (0leq xleq pi) и область значений (-1leq yleq 1).
Строим графики:
Уравнение косинус икс равен минус а
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (cos x=-1)
Уравнение косинус икс равен минус а
(x=pi+2pi k)
б) (cos x=frac<sqrt>)
Уравнение косинус икс равен минус а
(x=pmfracpi4+2pi k)
в) (cos x=0)
Уравнение косинус икс равен минус а
(x=pmfracpi2+2pi k=fracpi2+pi k)
г) (cos x=sqrt)
Уравнение косинус икс равен минус а
(sqrtgt 1, xinvarnothing)
Решений нет
д) (cos x=0,7)
Уравнение косинус икс равен минус а
(x=pm arccos(0,7)+2pi k)
e) (cos x=-0,2)
Уравнение косинус икс равен минус а
(x=pm arccos(-0,2)+2pi k)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8; arccos(-0,5); arccosfracpi7 $$

Уравнение косинус икс равен минус аСпособ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; (fracpi7approx 0,45)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: (angle A_1OAltangle A_2OAangle A_3OA)
$$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$Уравнение косинус икс равен минус аСпособ 2. Решение с помощью графика (y=arccosx)

Отмечаем на оси OX аргументы 0,8; -0,5; (fracpi7approx 0,45). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; (fracpi7); -0,5.
И записываем арккосинусы по возрастанию: (arccos0,8lt arccosfracpi7lt arccos(-0,5))

Пример 4*. Решите уравнения:
(a) arccos(x^2-3x+3)=0) begin x^2-3x+3=cos0=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:

(б) arccos^2x-arccosx-6=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: $$ t^2-t-6=0Rightarrow (t-3)(t+2)=0Rightarrow left[ begin t_1=3\ t_2=-2lt 0 — text end right. $$ Возвращаемся к исходной переменной: begin arccosx=3\ x=cos3 end Ответ: cos3

(в) arccos^2x-pi arccosx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(pi^2)-4cdot frac=frac, sqrt=fracpi3\ left[ begin t_1=frac=fracpi3\ t_2=frac=frac end right. Rightarrow left[ begin arccosx_1=fracpi3\ arccosx_2=frac end right. Rightarrow left[ begin x_1=cosleft(fracpi3right)=frac12\ x_2=cosleft(fracright)=-frac12 end right. end Ответ: (left)

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Решение уравнения sin x — cos x = 1. Урок-семинар

Разделы: Математика

Цели урока:

Главная дидактическая цель: рассмотреть все возможные способы решения данного уравнения.

Обучающие: изучение новых приемов решения тригонометрических уравнений на примере данного в творческой ситуации урока-семинара.

Развивающие: формирование общих приемов решения тригонометрических уравнений; совершенствование мыслительных операций учащихся; развитие умений и навыков устной монологической математической речи при изложении решения тригонометрического уравнения.

Воспитывающие: развивать самостоятельность и творчество; способствовать выработке у школьников желания и потребности обобщения изучаемых фактов.

Вопросы для подготовки и дальнейшего обсуждения на семинаре.

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Все учащиеся разбиваются на группы (по 2-4 человека) в зависимости от общего количества учащихся и их индивидуальных способностей и желания. Самостоятельно определяют для себя тему для подготовки и выступления на уроке-семинаре. Выступает один человек от группы, а остальные учащиеся принимают участие в дополнениях и исправлениях ошибок, если в этом возникнет необходимость.

Организационный момент.

Тема урока:

“Различные способы решения тригонометрического уравнения sin x — cos x = 1

Форма проведения: урок – семинар.

Эпиграф к уроку:

“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия. Задача, которую вы решаете, может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы”

Задачи урока:

а) рассмотреть возможность решения одного и того же уравнения различными способами;
б) познакомиться с различными общими приемами решения тригонометрических уравнений;
в) изучение нового материала (введение вспомогательного угла, универсальная подстановка).

План семинара

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Содержание.

1. Слово предоставляется первому участнику.

Приведение уравнения sin x — cos x = 1 к однородному относительно синуса и косинуса.
Разложим левую часть по формулам двойного аргумента, а правую часть заменим тригонометрической единицей, используя основное тригонометрическое тождество:

2 sin Уравнение косинус икс равен минус аcos Уравнение косинус икс равен минус а— cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а+ sin Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а= sin Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а+ cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а;

2 sin Уравнение косинус икс равен минус аcos Уравнение косинус икс равен минус а— cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а=0 ;
cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а= 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
Уравнение косинус икс равен минус а

cos Уравнение косинус икс равен минус а=0 ; Уравнение косинус икс равен минус а=Уравнение косинус икс равен минус а

Уравнение косинус икс равен минус а= 0 — однородное уравнение первой степени. Делим обе части уравнения на cos Уравнение косинус икс равен минус а. (cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а0, так как если cos Уравнение косинус икс равен минус а= 0 , то sin Уравнение косинус икс равен минус а— 0 = 0 Уравнение косинус икс равен минус аsin Уравнение косинус икс равен минус а= 0, а это противоречит тригонометрическому тождеству sin Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а+ cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а= 1).

Получим tg Уравнение косинус икс равен минус а-1 = 0 ; tg Уравнение косинус икс равен минус а= 1 ; Уравнение косинус икс равен минус а= Уравнение косинус икс равен минус а
Ответ: Уравнение косинус икс равен минус а
2. Слово предоставляется второму участнику.

Разложение левой части уравнения sin x — cos x = 1 на множители.

sin x – (1+ cos x ) = 1; используем формулы 1+ cos x = 2 Уравнение косинус икс равен минус а, Уравнение косинус икс равен минус аполучим Уравнение косинус икс равен минус а;
Уравнение косинус икс равен минус аУравнение косинус икс равен минус адалее аналогично:

произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
Уравнение косинус икс равен минус а

cos Уравнение косинус икс равен минус а=0 ; Уравнение косинус икс равен минус а=Уравнение косинус икс равен минус а
Уравнение косинус икс равен минус а= 0 — однородное уравнение первой степени. Делим обе части уравнения на cos Уравнение косинус икс равен минус а. (cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а0, так как если cos Уравнение косинус икс равен минус а= 0 , то sin Уравнение косинус икс равен минус а— 0 = 0 Уравнение косинус икс равен минус аsin Уравнение косинус икс равен минус а= 0, а это противоречит тригонометрическому тождеству sin Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а+ cos Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а= 1)

Получим tg Уравнение косинус икс равен минус а-1 = 0 ; tg Уравнение косинус икс равен минус а= 1 ; Уравнение косинус икс равен минус а= Уравнение косинус икс равен минус а
Ответ: Уравнение косинус икс равен минус а

3. Слово предоставляется третьему участнику.

Решение уравнения sin x — cos x = 1 введением вспомогательного угла.

Рассмотрим уравнение sin x — cos x = 1. Умножим и разделим каждое слагаемое левой части
уравнения на Уравнение косинус икс равен минус а. Получим Уравнение косинус икс равен минус аи вынесем в левой части уравнения Уравнение косинус икс равен минус аза скобку. Получим Уравнение косинус икс равен минус а; Разделим обе части уравнения на Уравнение косинус икс равен минус аи используем табличные значения тригонометрических функций. Получим Уравнение косинус икс равен минус а; Применим формулу синус разности.
Уравнение косинус икс равен минус а;
Уравнение косинус икс равен минус а Уравнение косинус икс равен минус аУравнение косинус икс равен минус а
Легко установить(с помощью тригонометрического круга), что полученное решение распадается на два случая: Уравнение косинус икс равен минус а

Уравнение косинус икс равен минус а; Уравнение косинус икс равен минус а Уравнение косинус икс равен минус аУравнение косинус икс равен минус а

Ответ: Уравнение косинус икс равен минус а

4. Слово предоставляется четвертому участнику.

Решение уравнения sin x — cos x = 1 способом преобразования разности (или суммы) тригонометрических функций в произведение.

Запишем уравнение в виде Уравнение косинус икс равен минус а, используя формулу приведения Уравнение косинус икс равен минус а. Применяя формулу разности двух синусов, получим

Уравнение косинус икс равен минус а Уравнение косинус икс равен минус аУравнение косинус икс равен минус а;

и так далее, аналогично предыдущему способу.Уравнение косинус икс равен минус а

Ответ: Уравнение косинус икс равен минус а

5. Слово предоставляется пятому участнику.

Решение уравнения sin x — cos x = 1 способом приведения к квадратному уравнению относительно одной из функций.

Рассмотрим основное тригонометрическое тождество Уравнение косинус икс равен минус а, откуда следует
Уравнение косинус икс равен минус аподставим полученное выражение в данное уравнение.
sin x — cos x = 1 Уравнение косинус икс равен минус аУравнение косинус икс равен минус а,

Уравнение косинус икс равен минус а

Возведем обе части полученного уравнения в квадрат:

Уравнение косинус икс равен минус а

Уравнение косинус икс равен минус а

Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а Уравнение косинус икс равен минус а Уравнение косинус икс равен минус аУравнение косинус икс равен минус а

В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Выполним ее.

Полученные решения эквивалентны объединению трех решений: Уравнение косинус икс равен минус а

Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Остается проверить третье решение Уравнение косинус икс равен минус аПодставим.
Левая часть: Уравнение косинус икс равен минус а

Получили: Уравнение косинус икс равен минус а, следовательно, Уравнение косинус икс равен минус а– постороннее решение.

Ответ: Уравнение косинус икс равен минус а

6. Слово предоставляется шестому участнику.

Возведение обеих частей уравнения sin x — cos x = 1 в квадрат.

Рассмотрим уравнение sin x — cos x = 1. Возведем обе части данного уравнения в квадрат.

Уравнение косинус икс равен минус а;

Уравнение косинус икс равен минус а;

Используя основное тригонометрическое тождество и формулу синуса двойного угла, получим Уравнение косинус икс равен минус аУравнение косинус икс равен минус а; sin 2x = 0 ; Уравнение косинус икс равен минус а.

Полученное решение эквивалентно объединению четырех решений:

Уравнение косинус икс равен минус а

(эти решения можно нанести на единичную окружность). Проверка показывает, что первое и четвертое решения — посторонние.

Ответ: Уравнение косинус икс равен минус а

7. Слово предоставляется седьмому участнику.

Использование универсальной подстановки в решении уравнения sin x — cos x = 1. Выражение всех функций через tg x по формулам:

Уравнение косинус икс равен минус а
Запишем данное уравнение с учетом приведенных формул в виде Уравнение косинус икс равен минус а.
Уравнение косинус икс равен минус аУравнение косинус икс равен минус а,

получим Уравнение косинус икс равен минус аУравнение косинус икс равен минус а

ОДЗ данного уравнения – все множество R. При переходе к Уравнение косинус икс равен минус аиз рассмотрения выпали значения, при которых Уравнение косинус икс равен минус ане имеет смысла, т. е. Уравнение косинус икс равен минус аили Уравнение косинус икс равен минус а.

Следует проверить, не являются ли Уравнение косинус икс равен минус арешениями данного уравнения. Подставим в левую и правую часть уравнения эти решения.

Левая часть: Уравнение косинус икс равен минус а.

Получили 1=1. Значит, Уравнение косинус икс равен минус а— решение данного уравнения.

Ответ: Уравнение косинус икс равен минус а

8. Слово предоставляется восьмому участнику.

Рассмотрим графическое решение уравнения sin x — cos x = 1.

Запишем рассматриваемое уравнение в виде sin x = 1 + cos x.

Построим в системе координат Оxy графики функций, соответствующих левой и правой частям уравнения. Абсциссы точек пересечения графиков являются решениями данного уравнения.

y = sin x – график: синусоида.
y = cos x +1 – график: косинусоида y = cos x, смещенная на 1 вверх по оси Oy. Абсциссы точек пересечения являются решениями данного уравнения.

Ответ: Уравнение косинус икс равен минус а

Итог урока.

  • Учащиеся научились решать тригонометрические уравнения вида Уравнение косинус икс равен минус а, освоили новый материал.
  • На примере одного уравнения рассмотрели несколько способов решения.
  • Учащиеся были непосредственными участниками урока, была задействована обратная связь в системе ученик-учитель.
  • Учащиеся получили навыки самостоятельной работы с дополнительной литратурой.

Список использованной литературы:

  1. Татарченкова С.С. Урок как педагогический феномен – Санкт-Петербург: Каро, 2005
  2. Выгодский Н.В. Справочник по элементарной математике.-М.: Наука, 1975.
  3. Виленкин Н.Я. и др. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Книга для учащихся 10-11 класса – М.: Просвещение, 1996.
  4. Гнеденко Б.В. Очерки по истории математики в России – М.: ОГИЗ, 1946.
  5. Депман И.Я. и др. За страницами учебника математики – М.: Просвещение, 1999.
  6. Дорофеев Г.В. и др. Математика: для поступающих в вузы – М.: Дрофа, 2000.
  7. Математика: Большой энциклопедический словарь. – М.: БСЭ, 1998.
  8. Мордкович А.Г. и др. Справочник школьника по математике. 10-11кл. Алгебра и начала анализа. – М.: Аквариум, 1997.
  9. 300 конкурсных задач по математике. – М.: Рольф, 2000.
  10. 3600 задач по алгебре и началам анализа. – М.: Дрофа, 1999.
  11. Школьная программа в таблицах и формулах. Большой универсальный справочник. – М.: Дрофа, 1999.
  12. Торосян В.Г. История образования и педагогической мысли: учеб. для студентов вузов. — М.: Изд-во ВЛАДОС-ПРЕСС, 2006.- 351 с.
  13. Крылова Н.Б. Педагогическая, психологическая и нравственная поддержка как пространство личностных изменений ребёнка и взрослого.// Классный руководитель.- 2000.- №3. –С.92-103.

🎥 Видео

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

ЕГЭ-2019. Решение уравнения вида cosx = a.Скачать

ЕГЭ-2019. Решение уравнения вида cosx = a.

Единичная окружность и уравнение косинус икс равен а.Скачать

Единичная окружность и уравнение косинус икс равен а.

Решение уравнения вида cosx=aСкачать

Решение уравнения вида cosx=a

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Решение уравнений cosx=a | Тригонометрия | Лекция 5.2Скачать

Решение уравнений cosx=a | Тригонометрия | Лекция 5.2

Находим косинус зная синус, через главное тождество Алгебра 10 классСкачать

Находим косинус зная синус, через главное тождество Алгебра 10 класс
Поделиться или сохранить к себе: