Конусом второго порядка называется поверхность, заданная относительно специально выбранной системы координат уравнением x 2 /a 2 +y 2 /b 2 -z 2 /c 2 =0 (1). Из уравнения конуса второго порядка следует, что, если точка с координатами (x, y, z) лежит на этой поверхности, то на этой поверхности лежит и точка (±x, ±y, ±z) при любом наборе знаков + и -. Следовательно, координатные плоскости являются плоскостями симметрии конуса второго порядка.
Будем считать, что a≥b. 1) Если a=b, то конус второго порядка называется конусом вращения и получается вращением вокруг оси oz двух пересекающихся прямых y/b-z/c=0 и y/b+z/c=0. 2) Пусть a>b. Начало координат называют вершиной конуса второго порядка. Ось oz — осью симметрии конуса.
Основное свойство конуса: если точка M0(x0, y0, z0) лежит на конусе второго порядка, то и вся прямая OM0 также лежит на нем, где O — вершина конуса, точка M0 отлична от вершины конуса.
Конус второго порядка, заданный уравнением (1) определяет собой поверхность, образованную следующим образом: каждая точка эллипса x 2 /(ac/h) 2 +y 2 /(bc/h) 2 =1 соединяется с началом координат по прямым.
Чтобы добавить страницу в закладки, нажмите Ctrl+D.
Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Конусы: определение, сечения, построение
Конусом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением
где — положительные параметры, характеризующие конус, причем .
Начало координат называется центром конуса (рис.4.44,а).
Конус является конической фигурой, поскольку вместе с любой своей точкой уравнению (4.50) удовлетворяют также все точки при луча . Точка является вершиной конуса (4.50), а любой луч , принадлежащий конусу, является его образующей .
Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Плоские сечения конуса
Сечения конуса координатными плоскостями представляют собой пары пересекающихся прямых, удовлетворяющих в этих плоскостях уравнениям (при ) или (при ) соответственно.
Рассмотрим теперь сечение конуса плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.50), получаем
При этому уравнению удовлетворяет одна вещественная точка — начало координат. При любом отличном от нуля значении параметра уравнение определяет эллипс с полуосями . Следовательно, сечение конуса плоскостью представляет с собой эллипс, центр которого лежит на оси аппликат, а вершины принадлежат координатным плоскостям и .
Таким образом, конус можно представить как поверхность, образованную эллипсами, центры которых лежат на оси аппликат, а вершины принадлежат координатным плоскостям и (см. рис.4.44,а).
Видео:Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать
Круговой конус
При все сечения конуса плоскостями становятся окружностями. Такой конус является фигурой вращения и называется прямым круговым конусом . Он может быть получен в результате вращения, например, прямой (образующей) вокруг оси аппликат (рис.4.44,б).
1. Конус является линейчатой поверхностью, поскольку может быть получен при помощи перемещения прямой.
2. Конус, образованный асимптотами гипербол, получающихся при пересечении гиперболоида плоскостями, проходящими через ось , называется асимптотическим конусом этого гиперболоида. На рис.4.44,в изображен асимптотический конус для однополостного и двуполостного гиперболоидов.
3. Конус (4.50) может быть получен из прямого кругового конуса (у которого ) в результате двух сжатий (растяжений) к координатным плоскостям и .
4. Начало канонической системы координат является центром симметрии конуса, координатные оси — осями симметрии конуса, координатные плоскости — плоскостями симметрии конуса.
В самом деле, если точка принадлежит конусу, то точки с координатами при любом выборе знаков также принадлежат конусу, поскольку их координаты удовлетворяют уравнению (4.50).
5. Рассмотрим сечение прямого кругового конуса плоскостями, не проходящими через его вершину, например, плоскостями , где — произвольная постоянная (параметр) — угловой коэффициент прямой в плоскости . Заметим, что образующие рассматриваемого конуса в плоскости описываются уравнением с угловым коэффициентом . Подставляя в уравнение конуса, получаем
Это уравнение проекции на координатную плоскость линии пересечения плоскости с конусом. Вычисляем инварианты
taucdotDelta=k^2-2 . По таблице 3.2 определяем, что рассматриваемое сечение, которое пересекает все образующие прямого кругового конуса, является эллипсом. При 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAwAFBgwIcMaGw61tx0C5PF/kAAADbSURBVCjPY2DAD45D6Sasss4MDI7CQFoUXYIdIstq+ByLbHifAkQv4yJMWeaF66CyehNgsiUJcGklOais3QGYLLMEXJoJJutXkCEONZlZwgBNlklKffYSmL3sjQZosi9LWF7DXRXWuAlFlvltA1sBws1svRuQZVlerkxA8hGbL4os46KsCQhZti5Uk/Um8AqchsmyobvK7oDWhGkwH000gpqhcE8JLHuugGflBlhoFMBC8t27dw4gWTYGhjSovRVIIakE0QsEoTBXBWDGLxiI4op9PLLuUHoSFjkA6I4yBZZKaW0AAAAASUVORK5CYII=» style=»vertical-align: middle;» /> имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно двум образующим кругового конуса, является гиперболой. При имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно одной образующей кругового конуса, является параболой. Поскольку при аффинных преобразованиях тип линий не изменяется, такой же вывод можно сделать для произвольного конуса (4.50):
– сечение конуса плоскостью, пересекающей все его образующие, является эллипсом (рис.4.45,а);
– сечение конуса плоскостью, параллельной двум его образующим, является гиперболой (рис.4.45,б);
– сечение конуса плоскостью, параллельной одной его образующей, является параболой (рис.4.45,в).
6. Конические сечения могут быть взяты в качестве эквивалентных определений эллипса, гиперболы, параболы.
Видео:Определитель второго порядка и его свойстваСкачать
Поверхности второго порядка. Конические поверхности.
Поверхность S называется конической поверхностью с вершиной в точке O, если для любой точки M0
этой поверхности прямая, проходящая через M0 и O, целиком принадлежит этой поверхности.
Функция F(x,y,z) называется однородной порядка m, если выполняется следующее:
Теорема (об уравнении конической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность S задана
Если поверхность S задана функцией F(x,y,z), являющейся однородным алгебраическим многочленом
второго порядка, то S называется конической поверхностью второго порядка.
Каноническое уравнение конуса
второго порядка имеет вид:
Мнимая коническая поверхность.
где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.
🌟 Видео
Кривые второго порядкаСкачать
Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.Скачать
Поверхности второго порядкаСкачать
Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать
Неполное уравнение второго порядка. Эллипс, гипербола. ЗадачиСкачать
§31.1 Приведение уравнения кривой к каноническому видуСкачать
Лекция 31.1. Кривые второго порядка. ЭллипсСкачать
Лекция 31.3. Кривые второго порядка. Парабола.Скачать
Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
Конус. 11 класс.Скачать
Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Видеоурок "Гипербола"Скачать
Семинар №11 "Поверхности второго порядка"Скачать
Лекция 31.2. Кривые второго порядка. Гипербола.Скачать
Тип кривой второго порядкаСкачать
Кривые 2 порядка. Канонический вид кривой 2 (второго) порядка доступно и просто.Скачать