Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

Видео:Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 1ч. 10 класс.Скачать

Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 1ч. 10 класс.

Уравнение константы равновесия гетерогенной реакции SiO2(к) + 2H2(г)↔ Si(к) + 2H2O(г) …

1. Кравн=
[SiO2 ][H2 ]2
2. Кравн=

[Si][H2O]2
[SiO2 ][H2 ]2
3. Кравн=
[H2O]2
4. Кравн=

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

u0421u043eu0440u0438 u0431u0440u043e u043du043e u043cu043du0435 u043du0443u0436u043du044b u043eu0447u043au0438 «>]» data-testid=»answer_box_list»>

Видео:Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 4ч. 10 класс.Скачать

Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 4ч. 10 класс.

Химическое равновесие. Принцип Ле Шателье

Материалы портала onx.distant.ru

Понятие химического равновесия

Признаки химического равновесия

Принцип Ле Шателье

Влияние температуры на химическое равновесие

Влияние давления на химическое равновесие

Влияние концентрации на химическое равновесие

Константа химического равновесия

Примеры решения задач

Задачи для самостоятельного решения

Видео:Химическое равновесие. Константа равновесия. 10 класс.Скачать

Химическое равновесие. Константа равновесия.  10 класс.

Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием. Такое равновесие называется еще подвижным или динамическим равновесием.

Видео:Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 3ч. 10 классСкачать

Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 3ч. 10 класс

Признаки химического равновесия

  1. Состояние системы остается неизменным во времени при сохранении внешних условий.
  2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.
  3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.
  4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
  5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Видео:Химическое равновесие. Константа равновесия. Обратимость реакций.Скачать

Химическое равновесие. Константа равновесия. Обратимость реакций.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия):

Если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

Видео:Химическое равновесие. Закон действующих масс.Скачать

Химическое равновесие. Закон действующих масс.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции ΔH, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Видео:Как выучить Химию с нуля за 10 минут? Принцип Ле-ШательеСкачать

Как выучить Химию с нуля за 10 минут? Принцип Ле-Шателье

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону.

В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO2. Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Видео:Обратимость и необратимость химических реакций. Химическое равновесие. 1 часть. 9 класс.Скачать

Обратимость и необратимость химических реакций. Химическое равновесие.  1 часть. 9 класс.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO2. Увеличение концентрации NO2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении инертного газа равновесие сместится в сторону исходных веществ.

Видео:Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 2ч. 10 класс.Скачать

Решение задач на тему: "Нахождение константы равновесия и равновесных концентраций". 2ч. 10 класс.

Константа химического равновесия

Для химической реакции:

константа химической реакции Кс есть отношение:

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

ΔGT о = – RTlnK (2)

Видео:Задания на константу равновесия по учебнику ЕреминаСкачать

Задания на константу равновесия по учебнику Еремина

Примеры решения задач

Задача 1. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г)→2CO2 (г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определите константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.

Решение.

ВеществоCOO2CO2 Сисходн, моль/л0,360,400 Спрореагир,моль/л0,160,080,16 Сравн, моль/л0,20,320,16

Во второй строке под Спрореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO2, причем, Сисходн= Спрореагир + Сравн.

Задача 2. Используя справочные данные, рассчитайте константу равновесия процесса

Решение.

ΔG298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Задача 3. Определите равновесную концентрацию HI в системе

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H2 , I2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H2.

Вещество H2 I2 HI
сисходн., моль/л120
спрореагир., моль/лxx2x
cравн., моль/л1-x2-x2x

Тогда, К = (2х) 2 /((1-х)(2-х))

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Задача 4. Используя справочные данные, определите температуру, при которой константа равновесия процесса: H2(г) + HCOH(г) →CH3OH(г) становится равной 1. Принять, что ΔН о Т » ΔН о 298, а ΔS о T » ΔS о 298.

Решение.

Если К = 1, то ΔG о T = — RTlnK = 0;

ΔН о 298 = -202 – (- 115,9) = -86,1 кДж = — 86,1× 10 3 Дж;

ΔS о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

0 = — 86100 — Т·(-109,52)

Задача 5. Для реакции SO2(Г) + Cl2(Г) →SO2Cl2(Г) при некоторой температуре константа равновесия равна 4. Определите равновесную концентрацию SO2Cl2, если исходные концентрации SO2, Cl2 и SO2Cl2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO2.

Вещество SO2 Cl2 SO2Cl2
cисходн., моль/л221
cпрореагир., моль/лxxх
cравн., моль/л2-x2-xx + 1

Решая это уравнение, находим: x1 = 3 и x2 = 1,25. Но x1 = 3 не удовлетворяет условию задачи.

Следовательно, [SO2Cl2] = 1,25 + 1 = 2,25 моль/л.

Видео:Химическое равновесие. 10 класс.Скачать

Химическое равновесие. 10 класс.

Задачи для самостоятельного решения

1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обоснуйте.

Так как увеличение давления благоприятствует процессу, протекающему с уменьшением количества
газообразных веществ, то равновесие сместится вправо в реакции 3.

2. При некоторой температуре равновесные концентрации в системе:

составляли: [HBr] = 0,3 моль/л, [H2] = 0,6 моль/л, [Br2] = 0,6 моль/л. Определите константу равновесия и исходную концентрацию HBr.

К = 4; исходная концентрация HBr составляет 1,5 моль/л.

3. Для реакции H2(г) + S(г) →H2S(г) при некоторой температуре константа равновесия равна 2. Определите равновесные концентрации H2 и S, если исходные концентрации H2, S и H2S равны, соответственно, 2, 3 и 0 моль/л.

[H2] = 0,5 моль/л; [S] = 1,5 моль/л.

4. Используя справочные данные, вычислите температуру, при которой константа равновесия процесса

становится равной 1. Примите, что ΔН о Т≈ΔН о 298, а ΔS о T≈ΔS о 298

5. Используя справочные данные, рассчитайте константу равновесия процесса:

6. Для реакции 2С3Н8(г) → н-С5Н12(г)+СН4(г) при температуре 1000 К константа равновесия равна 4. Определите равновесную концентрацию н-пентана, если исходная концентрация пропана равна 5 моль/л.

7. При температуре 500 К константа равновесия процесса:

равна 3,4·10 -5 . Вычислите Δ G о 500.

8. При температуре 800 К константа равновесия процесса н-С6Н14(г)+ 2С3Н6(г)2(г) равна 8,71. Определите ΔG о f,8003Н6(г)), если ΔG о f,800(н-С6Н14(г)) = 305,77 кДж/моль.

9. Для реакции СО(г) + Cl2(г) →СO2Cl2(г) при некоторой температуре равновесная концентрация СO2Cl2(г) равна 1,2 моль/л. Определите константу равновесия данного процесса, если исходные концентрации СО(г) и Cl2(г) равны соответственно 2,0 и 1,8 моль/л.

10. При некоторой температуре равновесные концентрации в системе 2SО2(г) + О2(г) →2SO3(г) составляли: [SО2 ]=0,10 моль/л, [О2]=0,16 моль/л, [SО3]=0,08 моль/л. Вычислите константу равновесия и исходные концентрации SО2 и О2.

К=4,0; исходная концентрация SО2 составляет 0,18 моль/л;
исходная концентрация О2 составляет 0,20 моль/л.

Видео:Интуитивное понимание формулы константы равновесия (не обязательно для продолжения курса)Скачать

Интуитивное понимание формулы константы равновесия (не обязательно для продолжения курса)

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

При равенстве энтальпийного и энтропийного факторов Δ Н = Т Δ S Δ G = 0 , что является термодинамическим условием химического равновесия. Химическое равновесие имеет динамический характер. Скорость реакции (число частиц образующихся в единицу времени в единице объема) в прямом направлении равна скорости реакции в обратном направлении. В этот момент концентрации исходных веществ и продуктов реакции не изменяются во времени и называются равновесными концентрациями. Они обозначаются символом вещества в квадратных скобках.

При равновесии химической реакции:

b B + d D = l L + m M

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o ,

где p p , L , p pM , p p , D , p pB –равновесные парциальные давления веществ, а [ L ], [ M ],[ D ],[ B ] –равновесные концентрации веществ; l , m , d , b — показатели степени, равные стехиометрическим коэффициентам.

Отношения произведений парциальных давлений или концентраций получили названия констант химического равновесия соответственно К р или К с :

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

Эти уравнения являются математическими выражениями закона действующих масс, открытого норвежскими учеными К. Гульдбергом и П. Вааге в 1867 г.:

отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, при Т = со nst , является величиной постоянной.

Например, для реакции синтеза аммиака:

закон действующих масс имеет вид:

Подставляя выражение константы в уравнения, получаем

Рассчитав величину Δ G 0 химической реакции, можно определить константу химического равновесия. Используя закон действующих масс, можно рассчитать равновесные концентрации реагирующих веществ.

Из вышеприведенного уравнения следует

Энергия Гиббса процесса имеет значение Δ G 0 = Δ H – T Δ S . Тогда

Если Δ Н и Δ S не зависят от температуры, то производная константы равновесия по температуре будет равна:

Это изобара равновесия. Она показывает, что константа равновесия экзотермической реакции уменьшается, а эндотермической реакции возрастает с повышением температуры. С увеличением абсолютного значения энтальпии реакции и уменьшением температуры чувствительность константы равновесия ( d ( ln K c )/ dT ) к изменению температуры повышается.

При изменении равновесных концентраций исходных веществ и продуктов реакции путем воздействия на систему происходит смещение химического равновесия. Если увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо. Если при внешнем воздействии увеличиваются концентрации исходных веществ, то говорят о смещении равновесия влево.

Характер смещения равновесия можно прогнозировать, применяя принцип французского ученого Ле Шателье :

если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет внешнее воздействие.

Принцип Ле Шателье следует из закона действующих масс. Если система находится при постоянной температуре, то константа равновесия при внешних воздействиях остается постоянной. Поэтому любое изменение равновесных концентраций веществ должно приводить к такому изменению равновесных концентраций других веществ, чтобы соблюдалось постоянство константы равновесия.

Рассмотрим процесс конверсии метана:

Константа равновесия этого процесса имеет вид:

1. Рассмотрим, как влияет изменение концентраций на смещение равновесия. При увеличении концентрации метана СН 4 равновесие системы нарушается, идет прямая реакция. Концентрации продуктов реакции СО 2 и Н2 увеличиваются, а концентрации Н2О уменьшается. Процесс будет протекать до тех пор, пока не установится новое равновесие. Новые равновесные концентрации компонентов будут такими, что константа равновесия не изменится. Если увеличить концентрацию СО 2 , то по принципу Ле Шателье равновесие сместится влево.

2. Если в результате реакции изменяется число молей газообразных веществ, то изменяется общее давление в системе и происходит смещение равновесия. В соответствии с принципом Ле Шателье увеличение общего давления вызывает смещение равновесия в сторону уменьшения числа молей газообразных веществ, т.е. в сторону уменьшения давления. Для рассматриваемой реакции увеличение давления должно смещать равновесие влево (слева- 3 моля, справа – 5 молей).

3. С увеличением температуры равновесие смещается в сторону эндотермических реакций, т.е. реакций протекающих с поглощением теплоты, понижение – в сторону экзотермических реакций.

Итак, принцип Ле Шателье позволяет создавать такие условия протекания реакции, которые обеспечивают максимальный выход продуктов реакции.

Химические реакции, протекающие на границе раздела фаз, называются гетерогенными химическими реакциями.

При равенстве скоростей прямой и обратной реакции наступает химическое равновесие в гетерогенной системе. Примерами гетерогенных процессов является пароводяная конверсия углерода, или восстановление оксидов металлов водородом:

Как и для любого равновесия, условием гетерогенного химического равновесия является равенство энергии Гиббса нулю, Δ G = 0 .

Как и в случае гомогенной химической реакции, константа гетерогенного равновесия равна отношению произведения равновесных концентраций (активностей) или парциальных давлений продуктов реакций к произведению равновесных концентраций (активностей) или парциальных давлений исходных веще ств в ст епенях, равных стехиометрическим коэффициентам в уравнении. Для реакции пароводяной конверсии углерода константа равновесия имеет вид:

для восстановления металла

Из приведенных выражений следует, что в уравнения констант гетерогенного химического равновесия не входят концентрации твердых веществ, участвующих в прямой и обратной реакциях. Это особенность гетерогенного химического равновесия.

Так как прямая и обратная реакции протекают на одной и той же поверхности раздела фаз, то площадь поверхности раздела фаз также не входит в уравнение константы химического равновесия.

Константа гетерогенного химического равновесия зависит от температуры. Она возрастает с увеличением температуры для эндотермической прямой реакции и уменьшается с увеличением температуры в случае экзотермической прямой реакции. Расчеты проводятся по тем же формулам, что и для гомогенных реакций.

Смещение равновесия гетерогенных реакций подчиняется принципу Ле Шателье . При повышении температуры оно смещается в сторону эндотермической реакции. При повышении давления или концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции, при повышении концентрации или давления продуктов реакции равновесие смещается в сторону обратной реакции. При повышении общего давления равновесие сдвигается в направлении уменьшения числа молекул газообразных веществ.

Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.

Одно и то же вещество может при изменении температуры и давления переходить в различные агрегатные состояния. Эти переходы, осуществляемые без изменения химического состава, называются фазовыми переходами. Если рассматривается гетерогенная система, в которой нет химического воздействия, а имеются лишь фазовые переходы, то при постоянстве температуры и давления существует так называемое фазовое равновесие. Примерами фазового равновесия могут быть процессы плавления, кристаллизации, испарения, конденсации воды. Это равновесие характеризуется некоторым числом фаз, компонентов и числом степеней термодинамической свободы системы или числом степеней свободы.

Фаза – это однородная часть системы одинаковая по составу и свойствам, имеющая поверхность раздела, и которая может быть выделена из системы чисто механическим путем.

Так, система лед+вода имеет две фазы.

Компонентом называется химически однородная составная часть системы, которая может быть выделена из системы и может существовать вне ее .

Так, в растворе хлорида натрия компонентами являются вода и хлорид натрия, но ионы натрия и хлора не могут считаться компонентами.

Число степеней свободы определяется как число параметров системы (температура, давление), которые могут быть произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

У системы, состоящей лишь из газа, можно менять два параметра, третий система устанавливает произвольно сама.

Число степеней свободы определяется правилом фаз Дж .Г иббса (1876 г.):

число степеней свободы равновесной системы, на которую влияют только температура и давление, равно числу независимых компонентов системы минус число фаз плюс два:

где С – число степеней свободы; К – число компонентов; Ф – число фаз; 2 – число независимых параметров, например температура и давление.

Классификацию систем можно проводить: по числу фаз (однофазные, двухфазные и т.д.); по числу компонентов системы (однокомпонентные, двухкомпонентные и т.д.); по числу степеней свободы – инвариантные (С = 0), моновариантные (С = 1), дивариантные (С = 2) и т. д. Диаграммы, по которым можно определить условия устойчивости фаз и фазового равновесия, называются фазовыми диаграммами или диаграммами состояния. Для однокомпонентных систем правило фаз имеет вид

Примером однокомпонентной системы служит диаграмма состояния воды в координатах давление – температура . Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o( р ис.15) Области, находящиеся между кривыми, являются однофазными областями (С = 2). Кривые соответствуют условиям равновесия между двумя фазами (С = 1). Кривая ОС отражает равновесие процесса кипения. Кривая кипения оканчивается точкой С , которая называется критической. При температуре выше этой точки невозможно получить жидкую воду ни при каком давлении. Вода, при температурах выше критической и давлении, выше критического, переходит в особое состояние, называемое сверхкритическим (СК). Свойства веществ в этом состоянии находятся между свойствами газа и жидкости. Например, вещества в сверхкритическом состоянии имеют очень низкую вязкость, высокую диффузионную активность и способность растворять многие вещества в твердом, жидком или газообразном видах.

Кривая ОВ – это кривая плавления. При увеличении давления температура плавления немного уменьшается, что обусловлено разрывом водородных связей при повышении давления.

Кривая ОА отражает процесс сублимации, т.е. перехода из твердого состояния в газообразное , минуя жидкое. Кривая ОД описывает поведение воды в неустойчивом (метастабильном) состоянии. Явление образования метастабильного состояния получило название переохлаждения.

В точке О существует равновесие одновременно между тремя фазами. Она называется тройной точкой воды, и для нее давление равно 610 Па и температура 273,15 К.

Процесс поглощения одного вещества поверхностью или объемом другого называется сорбцией.

Вещество, частицы которого поглощаются (газ, жидкость или растворенный компонент), называют сорбатом , а поглотитель (чаще твердое тело) – сорбентом .

Сорбционные процессы играют большую роль в технике. Например, для поддержания высокого вакуума в действующем электровакуумном приборе применяют геттеры – специально изготовленные материалы, которые активно поглощают остаточные газы. В качестве геттеров используют компактные ( Zr , Ta , Nb и др.) или распыленные ( Ba , Ca , Sr ) металлы. Сорбционные процессы широко используют в металлургии при обогащении руд (флотация), в энергетике при водоподготовке (ионный обмен) и др.

При контакте сорбент поглощает сорбат поверхностью или объемом. Сорбция только поверхностью называется адсорбцией , а только объемом – абсорбцией . Процесс обратный адсорбции называется десорбцией.

Адсорбция связана с особым энергетическим состоянием частиц на поверхности адсорбента в отличие от энергетического состояния частиц в его объеме . Частицы во внутренних слоях вещества испытывают одинаковое притяжение со стороны окружающих частиц по всем направлениям.

Частицы же поверхностного слоя подвергаются неодинаковому притяжению со стороны внутренних слоев вещества и со стороны частиц граничащей с веществом посторонней фазы. Поэтому частицы поверхностного слоя адсорбента обладают свободной поверхностной энергией , которая может быть снижена за счет возникновения абсорбционных взаимодействий с молекулами, атомами и ионами адсорбата .

Для границы раздела фаз жидкость – газ (пар) обычно используют термин «удельная (на 1 м 2 ) поверхностная энергия», называемая поверхностным натяжением , которая равно работе образования единицы площади поверхности раздела фаз (Дж/м 2 ).

Поверхностная энергия – это энергия Гиббса Δ G образования поверхности. Она равна произведению удельной поверхностной энергии σ на площадь поверхности раздела фаз S :

Удельная поверхностная энергия зависит от природы вещества. Чем выше энергия взаимодействия между частицами вещества, тем выше удельная поверхностная энергия. С увеличением температуры удельная поверхностная энергия уменьшается.

В зависимости от природы сил взаимодействия адсорбирующего вещества с адсорбентом различают физическую и химическую (хемосорбцию) адсорбцию. В первом случае при адсорбции возникают вандерваальсовы взаимодействия, во втором – химические связи.

Физическая адсорбция характеризуется невысоким тепловым эффектом и обратимостью.

Хемосорбция протекает необратимо. Тепловой эффект ее близок к тепловому эффекту химических реакций.

Поскольку адсорбция протекает самопроизвольно, то энергия Гиббса имеет отрицательное значение

Тепловой эффект адсорбции имеет также отрицательное значение

Если адсорбция протекает из газовой, жидкой фазы на поверхность жидкой или твердой фазы, то в процессе адсорбции происходит упорядочение адсорбированных частиц и энтропия системы уменьшается, т.е.

Отсюда следует, что с увеличением температуры энергия Гиббса системы возрастает, и при некоторой температуре Т р наступает равновесие, в это время скорость адсорбции равна скорости десорбции. При этом

При увеличении температуры адсорбция уменьшается. То есть вещество можно адсорбировать при невысокой температуре и десорбировать при более высокой.

Абсорбционное равновесие подвижно и может быть смещено в ту или иную сторону в соответствии с принципом Ле Шателье .

Количественно адсорбцию можно выражать в молях адсорбата на единицу площади адсорбента, моль/м 2 . Адсорбция зависит от природы адсорбента и адсорбата , температуры и концентрации или давления адсорбата . Кривую зависимости величины адсорбции Г от равновесных концентраций С или давлений р адсорбата при постоянной температуре Т называют изотермой адсорбции :

Г = f ( C ) или Г = f ( p ) при Т = const .

Изотерма адсорбции на однородной поверхности адсорбента была выведена американским ученым Дж .Л энгмюром . При выводе уравнения было сделано предположение, что поверхность адсорбента однородна и при максимальном заполнении образуется мономолекулярный слой. В этом случае уравнение имеет вид:

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

где Г — адсорбция при максимальном заполнении;

с – равновесная концентрация адсорбата ;

р – равновесное давление адсорбата ;

К а – константа равновесия процесса адсорбции.

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2oГрафически изотерма адсорбции имеет вид, приведенный на рис. 16

Изотерма Лэнгмюра редко соблюдается в реальности, поэтому предложены другие уравнения.

В 1906 г. Фрейндлих предложил эмпирическое уравнение изотермы. Уравнение Фрейндлиха имеет вид:

где К ф и n – постоянные.

При адсорбции изменяются свойства поверхностного слоя, т.е. поверхностное натяжение. Адсорбирующиеся вещества могут понижать поверхностное натяжение (это поверхностно — активные вещества – ПАВ), повышать поверхностное натяжение (поверхностно — инактивные вещества) и не влиять на поверхностное натяжение (поверхностно — неактивные вещества).

Широкое применение нашли лишь ПАВ. Способностью уменьшать поверхностное натяжение, т.е. поверхностной активностью обладают молекулы вещества, имеющие неполярные гидрофобные углеводородные части («хвосты») и полярные гидрофильные группы («головы»). К полярным принадлежат группы

Уравнение константы равновесия гетерогенной химической реакции sio2 2h2 si 2h2o

К ПАВ принадлежит натриевая соль стеариновой кислоты, входящей в состав мыла

Поверхностная активность обусловлена гидрофобной частью молекул ПАВ («хвостами»), которые выталкиваются из полярного растворителя, в то время как гидрофильные группы («головы») удерживают молекулы ПАВ на границе раздела фаз. Таким образом, молекулы ПАВ адсорбируются на границе раздела фаз, причем гидрофобная их часть обращена в сторону газа или неполярной жидкости, гидрофильная часть – в сторону полярной жидкости или твердого гидрофильного адсорбента.

Концентрация ПАВ в поверхностном слое на несколько порядков выше, чем в объеме жидкости, поэтому даже при малом содержании ПАВ они значительно снижают поверхностное натяжение. Поверхностная активность ПАВ возрастает с увеличением длины углеводородной части молекул и их концентрации.

Изменение поверхностного натяжения под действием ПАВ влияет на смачиваемость твердых тел жидкостью. Этот эффект используется для очистки тканей (стирка, чистка) или металлов от жировых загрязнений применением ПАВ, при адсорбции которых на границе раздела фаз вода – жир, вода – твердое тело изменяется поверхностное натяжение воды на этих границах, что приводит к переходу жира в виде капель в водную среду.

Применение ПАВ позволяет разделять пустую породу и руду при флотации руд. Пустая порода смачивается водой, содержащей ПАВ, а руда поднимается вверх с пузырьками воздуха, продуваемого через раздробленную породу в воде.

💥 Видео

Задача химическое равновесие. РАВНОВЕСНЫЕ КОНЦЕНТРАЦИИ и Кр.Скачать

Задача химическое равновесие. РАВНОВЕСНЫЕ КОНЦЕНТРАЦИИ и Кр.

Гетерогенное равновесиеСкачать

Гетерогенное равновесие

Влияние концентрации на скорость химических реакций. 10 класс.Скачать

Влияние концентрации на скорость химических реакций. 10 класс.

Химическая кинетика. Скорость химической реакции | ХимияСкачать

Химическая кинетика. Скорость химической реакции | Химия

Обратимость и необратимость химических реакций. Химическое равновесие. 2 часть. 9 класс.Скачать

Обратимость и необратимость химических реакций. Химическое равновесие. 2 часть. 9 класс.

Задача на Константу равновесия (Кр) с дискриминантом. Химия. Олимпиада + ВУЗСкачать

Задача на Константу равновесия (Кр) с дискриминантом. Химия. Олимпиада + ВУЗ

Константа равновесия и энергия Гиббса. Ответ на вопрос П.М. ТолстогоСкачать

Константа равновесия и энергия Гиббса. Ответ на вопрос П.М. Толстого

Экзо- и эндотермические реакции. Тепловой эффект химических реакций. 8 класс.Скачать

Экзо- и эндотермические реакции. Тепловой эффект химических реакций. 8 класс.
Поделиться или сохранить к себе: