Уравнение клапейрона менделеева p nkt

Уравнение клапейрона менделеева p nkt

Уравнение Менделеева-Клапейрона — уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем Vm и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

pV = RT , где R — универсальная газовая постоянная,

R = 8,31 Дж/(моль . К)

Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT. или pV = NАkT,

где NА — число Авогадро, k — постоянная Больцмана.

Уравнение клапейрона менделеева p nkt

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров — давление, объем или температура — остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.

Уравнение клапейрона менделеева p nkt

Изотермический процесс — процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется. Это закон Бойля — Мариотта.

Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой — термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P1V1=P2V2=const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.

Уравнение клапейрона менделеева p nkt

Изобарный процесс — процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется. Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Уравнение клапейрона менделеева p nkt

Изохорный процесс — процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.

Уравнение клапейрона менделеева p nkt

Итак, из закона pV = (М/m) . RT выводятся следующие законы:

p = const => V/T = const — закон Гей — Люссака .

V= const => p/T = const — закон Шарля

Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление — это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.

Уравнение клапейрона менделеева p nkt

Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро NA = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна NA?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = nRT и заметим, что число молей гелия n = N/NA. Отсюда:

NA = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

PV 7,95 . 10 -4 . 3 . 10 -2

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

Видео:Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать

Физика 10 класс: Уравнение Клапейрона-Менделеева

Уравнение состояния идеального газа

Содержание:

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона». Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Уравнение состояния идеального газа

Уравнение состояния идеального газа — это p = nkT называется уравнением Менделеева Клапейрона и оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа давления, объёма и температуры. Поэтому уравнение Менделеева Клапейрона называется ещё уравнением состояния идеального газа.

Термодинамические параметры газа

В предыдущих главах было показано, что при описании свойств газа можно пользоваться величинами, характеризующими молекулярный мир (микромир), например энергией молекулы, скоростью ее движения, массой и т. п. Числовые значения таких величин мы можем определять только с помощью расчета. Все такие величины принято называть микроскопическими (от греческого «микрос» — малый).

Однако для описания свойств газов можно пользоваться и такими величинами, числовые значения которых находят простым измерением с помощью приборов, например давлением, температурой и объемом газа. Значения таких величин определяются совместным действием огромного числа молекул, поэтому они называются макроскопическими (от греческого «макрос» — большой).

Соотношение (4.1): Уравнение клапейрона менделеева p nktустанавливает связь между микроскопическими и макроскопическими величинами для газов. Поэтому формулу (4.1) называют основным уравнением молекулярно-кинетической теории газов. Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа. Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Если взять определенную массу газа т, то при постоянных р, V и Т газ будет находиться в равновесном состоянии. Когда происходят изменения этих параметров, то в газе протекает тот или иной процесс. Если этот процесс состоит из ряда непрерывно следующих друг за другом равновесных состояний газа, то он называется равновесным процессом. Равновесный процесс должен протекать достаточно медленно, так как при быстром изменении параметров давление и температура не могут иметь соответственно одинаковые значения во всем объеме газа. В этой главе рассматриваются только равновесные процессы в газах, при которых масса газа остается постоянной.

Когда процесс в газе заканчивается, то газ переходит в новое состояние, а его параметры приобретают новые постоянные числовые значения, вообще говоря, отличные от их значений в начале процесса. Если же при постоянной массе газа значения всех его параметров в начале и в конце процесса окажутся одинаковыми, то процесс называется круговым или замкнутым.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон, выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Отметим еще, что такого процесса в газе, при котором изменялся бы только один параметр газа, не существует, так как значения этих параметров взаимосвязаны. Примером сказанного является закон Шарля, выражающий связь между р и Т.

Объединенный газовый закон. Приведение объема газа к нормальным условиям

Связь между давлением, объемом и температурой определенной массы газа устанавливается с помощью соотношения (4.9):

Уравнение клапейрона менделеева p nkt

Поскольку Уравнение клапейрона менделеева p nktобозначает число молекул в единице объема газа, то Уравнение клапейрона менделеева p nkt, где N — общее число молекул, V — объем газа. Тогда получим

Уравнение клапейрона менделеева p nkt

Так как при постоянной массе газа N остается неизменным, Уравнение клапейрона менделеева p nkt— постоянное число, т. е.

Уравнение клапейрона менделеева p nkt

Поскольку значения р, V и Т в (5.2) относятся к одному и тому же состоянию газа, можно следующим образом сформулировать объединенный газовый закон: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Следовательно, если числовые значения параметров в начале процесса, происходящего с какой-либо определенной массой газа, обозначить через р1 , V1 и Т1, а их значения в конце процесса соответственно через р2 , V2 и Т2, то

Уравнение клапейрона менделеева p nkt

Формулы (5.2) и (5.3) представляют собой математическое выражение объединенного газового закона.

На практике иногда нужно установить, какой объем V0 займет имеющаяся масса газа при нормальных условиях, т. е. при Т0=273 К и при р0=1,013 . 10 5 Па. Если значения параметров для этой массы газа в каком-либо произвольном состоянии, отличном от нормального, обозначить через р, V и Т, то на основании (5.3) получаем Уравнение клапейрона менделеева p nkt, или

Уравнение клапейрона менделеева p nkt

Формула (5.4) позволяет приводить объем заданной массы газа к нормальным условиям.

Молярная газовая постоянная. Определение числового значения постоянной Больцмана

Формула (5.1) справедлива для любой массы газа, в которой содержится N молекул. Если применить эту формулу к одному молю какого-либо газа, то N нужно заменить постоянной Авогадро NA, а V — объемом одного моля Vмоль

Уравнение клапейрона менделеева p nkt

Так как в одном моле любого газа содержится одно и то же число молекул NA, то произведение Уравнение клапейрона менделеева p nktимеет одинаковое значение для всех газов, т. е. не зависит от природы газа. Произведение Уравнение клапейрона менделеева p nkt обозначается R и называется молярной газовой постоянной. Таким образом,

Уравнение клапейрона менделеева p nkt

Уравнение клапейрона менделеева p nkt

Числовое значение R можно найти, если применить (5.5) к состоянию одного моля газа при нормальных условиях, так как при этом Уравнение клапейрона менделеева p nktм 3 /моль (§ 3.6). Действительно,

Уравнение клапейрона менделеева p nkt

Уравнение клапейрона менделеева p nkt

Это числовое значение R в СИ необходимо запомнить, так как им часто пользуются при расчетах и при решении задач.

Теперь легко найти числовое значение постоянной Больнмана Уравнение клапейрона менделеева p nkt. Из (5.6) получаем Уравнение клапейрона менделеева p nkt. Подставляя сюда числовые значения R и Уравнение клапейрона менделеева p nkt, вычисляем Уравнение клапейрона менделеева p nkt:

Уравнение клапейрона менделеева p nkt

Уравнение Клапейрона — Менделеева. Плотность газа

Выясним, как будет выглядеть соотношение (5.1), если в него ввести молярную газовую постоянную R. Так как N — полное число молекул в массе газа т, а Уравнение клапейрона менделеева p nkt— число молекул в одном моле, то

Уравнение клапейрона менделеева p nkt

где Уравнение клапейрона менделеева p nkt— число молей в массе газа /т. Поэтому

Уравнение клапейрона менделеева p nkt

Поскольку Уравнение клапейрона менделеева p nkt, а Уравнение клапейрона менделеева p nktравно массе газа т, деленной на массу одного моля газа Уравнение клапейрона менделеева p nkt, то получаем

Уравнение клапейрона менделеева p nkt

Соотношение (5.7) называется уравнением Клапейрона — Менделеева или уравнением состояния для произвольной массы идеального газа. Для одного моля идеального газа уравнение Клапейрона — Менделеева принимает вид

Уравнение клапейрона менделеева p nkt

С помощью формулы (5.7) легко выяснить, какими величинами определяется плотность газа. Так как Уравнение клапейрона менделеева p nkt, то из (5.7) имеем

Уравнение клапейрона менделеева p nkt

Зависимость средней квадратичной скорости молекул газа от температуры

Выясним теперь, как можно с помощью вычислений находить среднюю квадратичную скорость движения молекул газа Уравнение клапейрона менделеева p nkt. Поскольку средняя кинетическая энергия поступательного движения молекул газа Уравнение клапейрона менделеева p nktравна (3/2) Уравнение клапейрона менделеева p nkt, то можно написать Уравнение клапейрона менделеева p nkt, откуда

Уравнение клапейрона менделеева p nkt

Отметим, что под т в формуле (5.10) подразумевается масса одной молекулы в кг. Так как Уравнение клапейрона менделеева p nkt, получим Уравнение клапейрона менделеева p nkt. Поскольку Уравнение клапейрона менделеева p nktа есть масса одного моля газа Уравнение клапейрона менделеева p nkt(§ 3.6), имеем

Уравнение клапейрона менделеева p nkt

Наконец, из (5.9) следует, что Уравнение клапейрона менделеева p nkt, поэтому

Уравнение клапейрона менделеева p nkt

Среднюю квадратичную скорость можно находить по любой из формул (5.10)—(5.12). Из функции Максвелла можно получить формулы для средней арифметической скорости и наивероятнейшей скорости. Средняя арифметическая скорость

Уравнение клапейрона менделеева p nkt

Наконец, наивероятнейшую скорость вычисляют так:

Уравнение клапейрона менделеева p nkt

(Используя график функции Максвелла (рис. 3.3), поясните, почему Уравнение клапейрона менделеева p nktменьше Уравнение клапейрона менделеева p nkt, а Уравнение клапейрона менделеева p nktменьше Уравнение клапейрона менделеева p nkt

Изохорический процесс

Процессы, при которых масса газа и один из его параметров остаются постоянными, называются изопроцессами (от греческого «изос» — равный, одинаковый). Поскольку имеется три параметра газа, существует три различных изопроцесса. Первый из них (изохорический) рассмотрен выше (§ 4.3). Процесс в газе, который происходит при постоянной массе и неизменном объеме, называется изохорическим (от греческого «хора» — пространство). Графики для этого процесса называются изохорами (рис. 4.3).

Отметим, что к любому изопроцессу применим объединенный газовый закон и формулы (5.3), (5.7) и (5.8) с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объем V, поэтому формула (5.3) после сокращения на V принимает вид

Уравнение клапейрона менделеева p nkt

Итак, изохорический процесс подчиняется закону Шарля: при постоянной-массе газа и неизменном объеме давление газа прямо пропорционально его абсолютной температуре. Это видно и из уравнения Клапейрона — Менделеева (5.7):

Уравнение клапейрона менделеева p nkt

Так как V, т, Уравнение клапейрона менделеева p nktи R остаются постоянными, то из (5.7) следует, что р пропорционально Т. Отметим, что закон Шарля можно формулировать и так, как это было сделано в § 4.3.

Изобарический- процесс

Процесс в газе, который происходит при постоянной массе и неизменном давлении, называется изобарическим (от греческого «барос» — тяжесть). Этот процесс был изучен французским физиком Л. Гей-Люссаком в 1802 г.

Поскольку при изобарическом процессе р постоянно, то после сокращения на р формула (5.3) принимает вид

Уравнение клапейрона менделеева p nkt

Формула (5.16) является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объем газа прямо пропорционален его абсолютной температуре. (Это видно и из уравнения Клапейрона — Менделеева (5.7): так как р, т, Уравнение клапейрона менделеева p nktи R постоянны, то объем V пропорционален Т.)

На рис. 5.1 схематически изображен опыт Гей-Люссака. Колба с газом помещается в сосуд с водой и льдом.

Уравнение клапейрона менделеева p nkt

В пробку вставлена трубка, изогнутая таким образом, что свободный конец ее горизонтален. Газ в колбе отделен от окружающего воздуха небольшим столбиком ртути в трубке. Температуру газа определяют по термометру, а объем — по положению столбика ртути. Для этого на трубке нанесены деления, соответствующие определенному внутреннему объему трубки (при градуировке трубки можно учесть и расширение сосуда при нагревании, но оно сравнительно мало’).

Сначала по положению столбика ртути 1 определяют Уравнение клапейрона менделеева p nkt— объем газа при 0°С. Затем газ нагревают (столбик ртути перемещается в положение 2), в процессе нагревания записывают значения объема и температуры и строят график, который называется изобарой.

Оказывается, что изобара представляет собой прямую линию (рис. 5.2, а), которая пересекается с осью абсцисс в точке А.

Из подобия треугольников на рис. 5.2, а следует

Уравнение клапейрона менделеева p nkt

Обозначив Уравнение клапейрона менделеева p nktчерез Уравнение клапейрона менделеева p nkt, получим

Уравнение клапейрона менделеева p nkt

Здесь Уравнение клапейрона менделеева p nktкоэффициент объемного расширения газа (гл. 13).

Если повторять этот опыт для разных газов или для разных масс газа, то все графики будут пересекаться в точке А, соответствующей t=—273°С (рис. 5.2, б), т. е. коэффициент Уравнение клапейрона менделеева p nktодинаков для всех газов. Это означает, что расширение газа при изобарическом процессе не зависит от его природы.

Отметим, что для газов коэффициенты Уравнение клапейрона менделеева p nktи Уравнение клапейрона менделеева p nktв формулах (4.2а) и (5.17) численно одинаковы, поэтому обычно пользуются одним Уравнение клапейрона менделеева p nkt.

Изотермический процесс

Процесс в газе, который происходит при постоянной температуре, называется изотермическим.

Изотермический процесс в газе был изучен английским ученым Р. Бойлем и французским ученым Э. Мариоттом. Установленная ими опытным путем связь получается непосредственно из формулы (5.3) после сокращения на Т:

Уравнение клапейрона менделеева p nkt

Формула (5.18) является математическим выражением закона Бойля — Мариотта: при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объема газа на соответствующее давление есть величина постоянная:
Уравнение клапейрона менделеева p nkt
Соотношение (5.19) можно получить и из (5.7) или (5.8), так как при постоянном Г справа в формулах (5.7) и (5.8) стоит постоянная величина. График зависимости р от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рис. 5.3 изображены три изотермы для одной и той же массы газа, но при разных температурах Т.

Уравнение клапейрона менделеева p nkt

Отметим еще, что из формулы (5.9) непосредственно вытекает, что при изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

Уравнение клапейрона менделеева p nkt

(Подумайте, как проверить закон Бойля — Мариотта на опыте.)

Внутренняя энергия идеального газа

Как отмечалось, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия идеального газа представляет собой только сумму знамений кинетической энергии хаотического движения всех его молекул:

Уравнение клапейрона менделеева p nkt

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением(4.8): Уравнение клапейрона менделеева p nkt, то внутренняя энергия одного моля одноатомного идеального газа выразится формулой Уравнение клапейрона менделеева p nkt, где Уравнение клапейрона менделеева p nkt— постоянная Авогадро. Если учесть, что Уравнение клапейрона менделеева p nkt, то получим:

Уравнение клапейрона менделеева p nkt

Для произвольной массы одноатомного идеального газа имеем

Уравнение клапейрона менделеева p nkt

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Уравнение клапейрона менделеева p nkt

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одно-атомного при той же температуре:

Уравнение клапейрона менделеева p nkt

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле (5.22)?)

Работа газа при изменении его объема

Физический смысл молярной газовой постоянной. Опыт показывает, что сжатый газ в процессе своего расширения может выполнять работу. Приборы и агрегаты, действия которых основаны на этом свойстве газа, называют пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и т. д.

Представим себе цилиндр с подвижным поршнем, заполненный газом (рис. 5.4).

Уравнение клапейрона менделеева p nkt

Пока давление газа внутри цилиндра и окружающего наружного воздуха одинаковы, поршень неподвижен. Пусть при этом температура газа и окружающей среды равна Уравнение клапейрона менделеева p nktа давление равно р.

Будем теперь медленно нагревать газ в цилиндре до температуры Уравнение клапейрона менделеева p nkt. Газ при этом начинает изобарически расширяться (внешнее давление р остается постоянным), и поршень переместится из положения 1 в положение 2 на расстояние Уравнение клапейрона менделеева p nkt. При этом газ совершит работу против внешней силы. Сила F, совершающая эту работу, будет равна рS, где S — площадь сечения цилиндра. Из механики известно, что работа выражается формулой Уравнение клапейрона менделеева p nkt, или Уравнение клапейрона менделеева p nkt. Так как Уравнение клапейрона менделеева p nktесть приращение объема газа в процессе его изобарического нагревания от Уравнение клапейрона менделеева p nktдо Уравнение клапейрона менделеева p nkt, имеем

Уравнение клапейрона менделеева p nkt

Нетрудно сообразить, что при изохорическом процессе работа газа равна нулю, так как никакого изменения объема, занятого газом, в этом случае не происходит. Вообще следует помнить, что газ выполняет работу только в процессе изменения своего объема, т. е. при Уравнение клапейрона менделеева p nkt. Отметим, что при расширении газа Уравнение клапейрона менделеева p nktработа газа положительна; при сжатии газа Уравнение клапейрона менделеева p nktположительную работу выполняют внешние силы, а работа газа в этом случае отрицательна.

Выясним, как можно определить работу газа по графику зависимости р от V в том или ином газовом процессе. При изобарическом процессе график зависимости р от V представляет собой прямую линию, параллельную оси абсцисс, так как р постоянно. Из рис. 5.5 видно, что работа газа в этом случае численно равна заштрихованной площади.

Выясним, как найти работу газа при изотермическом процессе. На рис. 5.6 изображена изотерма идеального газа. При таком процессе газ выполняет работу, так как Уравнение клапейрона менделеева p nktв этом случае отлично от нуля. Формулу (5.25) здесь применять нельзя, так как она верна при постоянном давлении р, а в изотермической процессе р изменяется. Однако можно взять такое малое приращение объема Уравнение клапейрона менделеева p nkt, при котором изменением давления можно пренебречь. Тогда приближенно можно считать, что при увеличении объема газа на Уравнение клапейрона менделеева p nktдавление остается постоянным. Работу Уравнение клапейрона менделеева p nktпри этом можно вычислять по формуле Уравнение клапейрона менделеева p nkt. На рис. 5.6 она выражается заштрихованной площадью.

Разбивая интервал Уравнение клапейрона менделеева p nktна множество интервалов Уравнение клапейрона менделеева p nkt, настолько малых, что работу на каждом из них можно вычислять по формуле Уравнение клапейрона менделеева p nkt, полную работу газа найдем как сумму элементарных работ Уравнение клапейрона менделеева p nkt. Это означает, что работа газа будет равна сумме площадей, подобных заштрихованной площади на рис. 5.6. Следовательно, работа газа при изотермическом процессе выражается площадью, ограниченной двумя ординатами Уравнение клапейрона менделеева p nktи Уравнение клапейрона менделеева p nkt, отрезком оси абсцисс и графиком зависимости р от V.

Уравнение клапейрона менделеева p nkt

Можно строго доказать, что работа газа при любом процессе выражается площадью, ограниченной двумя ординатами, отрезком оси абсцисс и графиком того процесса в координатах V и р.

Выясним теперь физический смысл молярной газовой постоянной R. Применяя формулу (5.25) к одному молю идеального газа, получим

Уравнение клапейрона менделеева p nkt

Но из уравнения Клапейрона — Менделеева (5.8) для одного моля можно записать для двух состояний газа:

Уравнение клапейрона менделеева p nkt

Уравнение клапейрона менделеева p nkt

Подставляя это выражение в (5.26), будем иметь Уравнение клапейрона менделеева p nkt, или

Уравнение клапейрона менделеева p nkt

Из (5.27) следует, что молярная газовая постоянная численно равна работе, совершаемой одним молем идеального газа при его изобарическом нагревании на один кельвин.

Из соотношения Уравнение клапейрона менделеева p nktвидно, что постоянная Больцмана показывает, сколько работы в среднем приходится на одну молекулу идеального газа при изобарическом нагревании на один кельвин.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔ Уравнение клапейрона менделеева p nktУравнение клапейрона менделеева p nkt

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа).

Уравнение Клапейрона-Менделеева (1834 г) устанавливает связь между объемом V, давлением P и абсолютной температурой Т для газа:

n – число молей газа Уравнение клапейрона менделеева p nkt;

P – давление газа, Па;

V – объем газа, м 3 ;

T – абсолютная температура газа, К;

R – универсальная газовая постоянная 8,314 Дж/моль×K.

Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:

Уравнение клапейрона менделеева p nkt

Из уравнения Клапейрона-Менделеева следует три закона:

💡 Видео

Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачиСкачать

Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачи

62. Уравнение Клапейрона-МенделееваСкачать

62. Уравнение Клапейрона-Менделеева

Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой АрхиповымСкачать

Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой Архиповым

Физика ЕГЭ 2020 .p=nkt Задание 8 #2Скачать

Физика ЕГЭ 2020 .p=nkt  Задание 8 #2

Успеть за 300 секунд, #3: Уравнение Клапейрона-МенделееваСкачать

Успеть за 300 секунд, #3: Уравнение Клапейрона-Менделеева

Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Уравнение идеального газа: PV = nRT | Газы.Молекулярно-кинетическая теория | Химия (видео 1)Скачать

Уравнение идеального газа: PV = nRT | Газы.Молекулярно-кинетическая теория | Химия (видео 1)

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭСкачать

Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭ

Уравнение Менделеева-Клапейрона.Все виды задач на ЕГЭ.52 задачиСкачать

Уравнение Менделеева-Клапейрона.Все виды задач на ЕГЭ.52 задачи

Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.Скачать

Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.

ВСЁ МКТ С 0 | УРАВНЕНИ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА | ИЗОПРОЦЕССЫ | ПЕРВОЕ НАЧАЛОСкачать

ВСЁ МКТ С 0 | УРАВНЕНИ МЕНДЕЛЕЕВА-КЛАПЕЙРОНА | ИЗОПРОЦЕССЫ | ПЕРВОЕ НАЧАЛО

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Вывод уравнения состояния Клапейрона—МенделееваСкачать

Вывод уравнения состояния Клапейрона—Менделеева

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)
Поделиться или сохранить к себе: