Уравнение клапейрона клаузиуса давление насыщенного пара

Видео:Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать

Физика 10 класс: Уравнение Клапейрона-Менделеева

Клапейрона–Клаузиуса

ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

Уравнение клапейрона клаузиуса давление насыщенного пара(*)

ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (*) к каждой из фаз, можно написать

Уравнение клапейрона клаузиуса давление насыщенного пара

Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

Уравнение клапейрона клаузиуса давление насыщенного пара, Уравнение клапейрона клаузиуса давление насыщенного параУравнение клапейрона клаузиуса давление насыщенного пара

Уравнение клапейрона клаузиуса давление насыщенного параПриравнивая правые части уравнений 1 и 2, получим

Для равновесного обратимого процесса согласно уравнениям Уравнение клапейрона клаузиуса давление насыщенного параи Уравнение клапейрона клаузиуса давление насыщенного паразапишем

Уравнение клапейрона клаузиуса давление насыщенного пара,

а уравнение (3) примет вид

Уравнение клапейрона клаузиуса давление насыщенного пара,

где ∆Hпер – теплота фазового перехода.

Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

Уравнение клапейрона клаузиуса давление насыщенного парауравнение

Клапейрона–Клаузиуса

где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

Уравнение клапейрона клаузиуса давление насыщенного пара

где ∆Hисп , ∆Hсуб – теплоты испарения и сублимации; Vп, Vж, Vтв – мольные объемы пара, жидкости и твердого тела соответственно.

В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Тпл. Плотность твердого фенола ρтв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆Hпл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

Уравнение клапейрона клаузиуса давление насыщенного пара

Уравнение клапейрона клаузиуса давление насыщенного пара

Прирост температуры плавления при повышении давления на 1 атм ( 1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Тпл = 314,2+2,29 = 316,49 К.

Следует иметь в виду, что в процессе плавления у большинства веществ Vж > Vтв , тогда ∆V>0 и при повышении давления Р↑ температура плавления повышается Т↑.

Однако, такие вещества как вода (Н2О), висмут (Bi), имеют объем твердой фазы Vтв больше, чем объем жидкой фазы Vж уд = 10 -3 м 3 /кг и Vтв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆Hпл = 332,4 кДж/кг:

Уравнение клапейрона клаузиуса давление насыщенного пара

Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

Уравнение для процесса испарения Уравнение клапейрона клаузиуса давление насыщенного параможно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, Vп >> Vж , т.е. величиной Vж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

Уравнение клапейрона клаузиуса давление насыщенного пара

Уравнение клапейрона клаузиуса давление насыщенного пара

Пар подчиняется законам идеального газа: PV=RT Уравнение клапейрона клаузиуса давление насыщенного пара, тогда Уравнение клапейрона клаузиуса давление насыщенного пара, преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

Уравнение клапейрона клаузиуса давление насыщенного параили

Уравнение клапейрона клаузиуса давление насыщенного пара

Проведем интегрирование уравнения (1) в пределах от Т1 до Т2 и соответственно от Р1 до Р2 при условии, что в области невысоких давлений пара ∆Нисп ≈ const; в результате интегрирования получим:

Уравнение клапейрона клаузиуса давление насыщенного пара

∆Нисп / R = const, выносим за знак интеграла

Уравнение клапейрона клаузиуса давление насыщенного пара

При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р1 и Р2 и соответствующие им температуры испарения Т1 и Т2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

Уравнение клапейрона клаузиуса давление насыщенного пара

Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен Уравнение клапейрона клаузиуса давление насыщенного пара, т.е. Уравнение клапейрона клаузиуса давление насыщенного пара, а Уравнение клапейрона клаузиуса давление насыщенного пара

Расчетные значения ∆Нисп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Нисп определяют изменение давления при изменении температуры в процессе испарения.

Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

Пример. Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

для водяного пара ∆Н(г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н(ж) 0 = -285,83 кДж/моль; для льда ∆Н(тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

Уравнение клапейрона клаузиуса давление насыщенного пара

а теплота превращения воды в лед:

Уравнение клапейрона клаузиуса давление насыщенного пара

Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

В результате фазовых переходов происходит изменение энтропии. Такие изменения в зависимости от температуры представим на рисунке.

Уравнение клапейрона клаузиуса давление насыщенного пара

Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

Пример. Оценим скачок энтропии на примере фазовых переходов воды:

Уравнение клапейрона клаузиуса давление насыщенного пара,

когда известны стандартные абсолютные значения энтропии Sтв 0 =39,4; Sж 0 =69,9; Sг 0 =188,7 Дж/(моль·К).

Уравнение клапейрона клаузиуса давление насыщенного пара

В соответствии с рисунком для воды Уравнение клапейрона клаузиуса давление насыщенного пара

По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой Уравнение клапейрона клаузиуса давление насыщенного пара

Пример.Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Нисп =24,16 кДж/моль.

Уравнение клапейрона клаузиуса давление насыщенного пара

Молекулярная масса Уравнение клапейрона клаузиуса давление насыщенного пара= 64,5 г/моль.

В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Нпер в соответствии с уравнением Клапейрона–Клаузиуса.

Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

В настоящее время насчитывается около 400 твердых минералов, для которых наблюдаются фазовые переходы II рода: рутил, анатаз, алмаз и особенно кварц, который имеет семь модификаций, причем наряду с фазовыми переходами I рода наблюдаются фазовые переходы II рода. Так, при 573 0 С и переходе модификации кварца β Уравнение клапейрона клаузиуса давление насыщенного параα теплоемкость и коэффициент линейного расширения изменяются скачкообразно (I род), но при этом поглощается теплота 10,9 кДж/моль (II род).

|следующая лекция ==>
ДИАГРАММА СОСТОЯНИЯ СЕРЫ.|ХАРАКТЕРИСТИКА И СВОЙСТВА РАСТВОРОВ.

Дата добавления: 2016-02-02 ; просмотров: 3148 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Уравнение Клаузиуса – Клайперона и его анализ.

Представьте себе чашку со льдом и водой. Чашка находится в комнате с температурой 0 о С. Лед и вода находятся в равновесии друг с другом, и их соотношение остается неизменным, хотя в отдельных микроскопических участках мы можем обнаружить переход воды из жидкого агрегатного состояния в твердое и наоборот. Эта картинка соответствует равновесной системе, в которой происходит обратимый процесс (плавление – кристаллизация) и нет химической реакции ( — δWm полезн = 0) .

В условиях равновесия: μж = μлед.

В соответствии с dG ≤ — δWm полезн – SdT + VdP. Для одного моля можно записать:

с учетом μж = μлед, уравнивая и вынося подобные члены получаем:

Так как тут процесс плавление – кристаллизация проходит при постоянном давлении то ∆s = hпл/T, hпл — теплота плавления одного моля вещества. Подставляя в (11.2) получаем уравнение Клаузиуса — Клайперона:

Уравнению (11.3) соответствует кривая 1 (кривая зависимости давления плавления от температуры плавления (так не говорят) или кривая зависимости температуры плавления от давления (так говорят)). Процесс плавления протекает с поглощением теплоты (эндотермический, положительный процесс) поэтому hпл > 0. (Для процесса кристаллизации наоборот). Температура положительная величина. Изменение объема может быть как положительным, так и отрицательным. В зависимости от этого кривая наклоняется в лево или в право. Аналогично в зависимости от к в уравнении у = кх.

Для процессов испарения и возгонки уравнение (11.3) удобнее представить в виде:

dlnP/dT = ∆H/T 2 R. (11.4)

Здесь все переменные положительны, поэтому dlnP/dT положительно и кривые возгонки (3) и испарения (2) наклонены вправо.

Уравнение клапейрона клаузиуса давление насыщенного пара
12. Фазовое равновесие в однокомпонентной системе. Диаграмма состояний

Рассмотрим и проанализируем диаграмму состояния воды (рис.1.4). Поскольку вода – единственное присутствующее в системе вещество, число независимых компонентов К = 1. В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА – зависимость давления насыщенного пара воды от температуры), твердым телом и газом (линия ОВ – зависимость давления насыщенного пара надо льдом от температуры), твердым телом и жидкостью (линия ОС – зависимость температуры плавления льда от давления). Три кривые имеют точку пересечения О, называемую тройной точкой воды; тройная точка отвечает равновесию между тремя фазами.

Уравнение клапейрона клаузиуса давление насыщенного пара

Рис. 1.4. Диаграмма состояния воды

В тройной точке система трехфазна и число степеней свободы равно нулю; три фазы могут находиться в равновесии лишь при строго определенных значениях температуры и давления (для воды тройная точка отвечает состоянию с Р = 6.1 кПа и Т = 273.16 К).

Кривая ОВ теоретически продолжается до абсолютного нуля, а кривая давления насыщенного пара над жидкостью ОА заканчивается в критической точке воды (Tкр = 607.46 К, Ркр = 19.5 МПа); выше критической температуры газ и жидкость не могут существовать как отдельные фазы. Кривая ОС в верхней части (при высоких давлениях) изменяет свой наклон (появляются новые кристаллические фазы, плотность которых, в отличие от обычного льда, выше, чем у воды).

Внутри каждой из областей диаграммы (АОВ, ВОС, АОС) система однофазна; число степеней свободы системы равно двум (система дивариантна), т.е. можно одновременно изменять и температуру, и давление, не вызывая изменения числа фаз в системе:

На каждой из линий число фаз в системе равно двум и, согласно правилу фаз, система моновариантна, т.е. для каждого значения температуры имеется только одно значение давления, при котором система двухфазна:

Влияние давления на температуру фазового перехода описывает уравнение Клаузиуса – Клапейрона:

Уравнение клапейрона клаузиуса давление насыщенного пара(I.109)

Здесь ΔVфп = V2 – V1 есть изменение молярного объема вещества при фазовом переходе (причем V2 относится к состоянию, переход в которое сопровождается поглощением теплоты). Уравнение Клаузиуса – Клапейрона позволяет объяснить наклон кривых равновесия на диаграмме состояния однокомпонентной системы. Для переходов «жидкость – пар» и «твердое вещество – пар» ΔV всегда больше нуля; поэтому кривые на диаграмме состояния, отвечающие этим равновесиям, всегда наклонены вправо (повышение температуры всегда увеличивает давление насыщенного пара). Поскольку молярный объем газа много больше молярного объема того же вещества в жидком или твердом агрегатном состояниях (Vг >> Vж, Vг >> Vт), уравнение (I.109) для частных случаев испарения и возгонки примет следующий вид:

Уравнение клапейрона клаузиуса давление насыщенного пара(I.110)

Для многих веществ скрытая теплота парообразования или возгонки постоянна в большом интервале температур; в этом случае уравнение (I.110) можно проинтегрировать:

Уравнение клапейрона клаузиуса давление насыщенного пара(I.111)

Кривая равновесия «твердое вещество – жидкость» на диаграммах состояния воды и висмута наклонена влево, а на диаграммах состояния остальных веществ – вправо. Это связано с тем, что плотность воды больше, чем плотность льда (и плотность жидкого висмута больше его плотности в твердом состоянии), т.е. плавление сопровождается уменьшением объема (ΔV 0 и, согласно уравнению Клаузиуса – Клапейрона, увеличение давления приводит к повышению температуры плавления.

Условием равновесия в однокомпонентной системе является равенство химических потенциалов и изменений химических потенциалов для всех фаз.

Закон Гиббса. Пусть есть система из Ф фаз в которых распределены К компонентов. На систему оказывают свое воздействие N физических факторов. Для описания этой системы нам надо указать состав каждой из фаз и величины влияющих физических факторов. То есть Ф(К – 1) + N переменных. (К – 1) – потому что если фаза состоит из 3 компонентов, то нам надо задать концентрации двух. В условиях равновесия в системе химические потенциалы у каждого компонента во всех фазах между собой будут равны. И через химические потенциалы будут между собой связаны составы фаз. Это уменьшит число переменных на (Ф – 1)К.

С = Ф(К – 1) + N — (Ф – 1)К

Выражение (12.2) носит название правило фаз Гиббса.

С – число переменных, которое необходимо знать, чтобы полностью охарактеризовать систему в любой точке на диаграмме. С другой стороны число степеней свободы, переменные которые мы можем свободно менять в системе в определенных пределах без изменения числа фаз.

Вернемся к рисунку 1. В тройной точке в равновесии находятся 3 фазы, N = 2 (давление и температура), компонент один, поэтому число степеней свободы 0. Это значит что мы ни чего не можем изменить. Если мы будем подводить тепло, то оно будет расходоваться на плавления льда. И пока лед не растает система будет неизменной. Когда лед растает мы перейдем на линию 2 – испарения. Число фаз 2. число степеней свободы 1. это значит мы можем произвольно менять или Р или Т. Что-то одно, вторая переменная изменится автоматически. Меняя или Р или Т мы будем двигаться по кривой испарения. Если вся жидкость испарится то мы окажемся в области пара. Фаза одна число степеней свободы 2. То есть можно одновременно менять и Р и Т.

Видео:Физическая химия # 2. Вывод уравнения Клаузиуса-КлапейронаСкачать

Физическая химия # 2. Вывод уравнения Клаузиуса-Клапейрона

Уравнение Клапейрона—Клаузиуса

Как мы знаем из молекулярно-кинетической теории, атомы или молекулы в жидкостях и газах находятся в состоянии постоянного движения. Время от времени отдельные молекулы жидкости, движущиеся достаточно быстро, могут «срываться» с ее поверхности. Таким образом, над любой жидкостью какое-то количество молекул данного вещества будет находиться в виде пара. Давление этих молекул, если нет посторонних примесей, называется давлением пара этого вещества. Иногда можно почувствовать это присутствие пара над жидкостью — вспомните характерное ощущение влажности на берегу моря или океана.

Нам также известно, что для перевода вещества из жидкого в газообразное состояние (см. Фазовые переходы) нужно затратить некоторую энергию. Эта энергия называется теплотой испарения или теплотой парообразования. Уравнение Клапейрона—Клаузиуса как раз и описывает отношение между теплотой испарения H , давлением пара p и температурой T вещества:

ln p = H / RT + константа

где ln p — натуральный логарифм, взятый от величины давления пара, а R — постоянная Ридберга. Температура T измеряется в кельвинах.

Первым эту зависимость в 1834 году вывел инженер-конструктор паровых машин Бенуа Клапейрон. Естественно, в силу его специальности, Клапейрона интересовала прежде всего теплота парообразования, и он использовал свое уравнение преимущественно в инженерно-прикладных целях. Для науки же уравнение теплоты фазового перехода было повторно открыто почти два десятилетия спустя Рудольфом Клаузиусом, автором формулировки второго начала термодинамики.

Чаще всего уравнение Клапейрона—Клаузиуса используется для простого расчета или измерения теплоты испарения различных веществ. Измеряя давление пара при различных температурах и нанося его на график, по одной оси которого откладывается значение lnp, а по другой — величина 1/Т, ученые по полученной линейной зависимости (углу наклона прямой) определяют теплоту испарения вещества.

Уравнение клапейрона клаузиуса давление насыщенного пара

Французский физик и инженер. Родился Париже. Окончил Политехническую школу и Школу минного дела. В 1820-1830 гг. работал в Институте инженеров путей сообщения в Петербурге. По возвращении во Францию стал профессором Школы мостов и дорог в Париже. Прославился как проектировщик железных дорог, конструктор железнодорожных мостов и паровозов. Доказал «теорему о трех моментах», используемую для расчета несущих конструкций с тремя и более точками опоры. Однако самый большой вклад Клапейрона в науку внес благодаря изучению тепловых процессов, за что и был избран действительным членом Академии наук Франции.

Уравнение клапейрона клаузиуса давление насыщенного пара

Немецкий физик. Родился в Кёслине (ныне Кошалин, Польша) в семье пастора. Учился в частной школе, директором которой был его отец. В 1848 году окончил Берлинский университет. По окончании университета предпочел физику и математику истории, которую первоначально изучал, преподавал в Берлине и Цюрихе, занимал кафедру профессора физики университетов в Цюрихе, Вюрцбурге и Бонне. С 1884 года — ректор Боннского университета. Главные работы Клаузиуса посвящены основам термодинамики и кинетической теории газов. К сожалению, тяжелые ранения, полученные во время службы добровольцем в качестве санитара во время Франко-прусской войны, помешали Клаузиусу в полной мере реализовать свой научный потенциал. Тем не менее, уже после войны и ранений, именно он сформулировал второе начало термодинамики в его современном виде.

🌟 Видео

Урок 187. Испарение и конденсация. Насыщенный пар и его свойстваСкачать

Урок 187. Испарение и конденсация. Насыщенный пар и его свойства

Л7 - Теплообмен при фазовых переходах.Скачать

Л7 - Теплообмен при фазовых переходах.

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Фазовые диаграммы. Тройная точка. Критическое состояние вещества. 10 класс.Скачать

Фазовые диаграммы. Тройная точка. Критическое состояние вещества. 10 класс.

Реальные газы. Изотермы Эндрюса и Ван-Дер-Ваальса. Метастабильные состоянияСкачать

Реальные газы. Изотермы Эндрюса и Ван-Дер-Ваальса. Метастабильные состояния

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Лекция №6 "Фазовые переходы. Газ Ван-дер-Ваальса"Скачать

Лекция №6 "Фазовые переходы. Газ Ван-дер-Ваальса"

Лекция №6 (Булыгин В.С.)Скачать

Лекция №6 (Булыгин В.С.)

Консультация по термодинамике. Часть 2Скачать

Консультация по термодинамике. Часть 2

Термодинамика 5. Дистант 11Скачать

Термодинамика 5. Дистант 11

Урок 202. Давление под искривленной поверхностью жидкости. Формула ЛапласаСкачать

Урок 202. Давление под искривленной поверхностью жидкости. Формула Лапласа

Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Теплофизика Л7. Фазовые переходы. Уравнение Клапейрона - Клаузиуса. Уравнение Ван-дер-ВаальсаСкачать

Теплофизика Л7.  Фазовые переходы.  Уравнение Клапейрона - Клаузиуса. Уравнение Ван-дер-Ваальса

Урок 195. Изотермы реального газаСкачать

Урок 195. Изотермы реального газа

Капиллярный эффектСкачать

Капиллярный эффект

Грибов В. А. - Термодинамика и статистическая физика - Фазовые переходыСкачать

Грибов В. А. - Термодинамика и статистическая физика - Фазовые переходы
Поделиться или сохранить к себе: