Уравнение идеального газа в дифференциальном виде

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Видео:Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Уравнение идеального газа в дифференциальном виде

Произведение числа Авогадро Уравнение идеального газа в дифференциальном видена постоянную Больцмана k называют универсальной газовой постоянной (R): R=Уравнение идеального газа в дифференциальном видеk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Уравнение идеального газа в дифференциальном видеk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Уравнение идеального газа в дифференциальном виде

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Уравнение идеального газа в дифференциальном виде) в состояние (Уравнение идеального газа в дифференциальном виде) (рис. 30.1).

Уравнение идеального газа в дифференциальном виде

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Уравнение идеального газа в дифференциальном видеРазделив обе части первого уравнения на Уравнение идеального газа в дифференциальном виде, а второго — на Уравнение идеального газа в дифференциальном виде, получим: Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном виде. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Уравнение идеального газа в дифференциальном виде

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Уравнение идеального газа в дифференциальном виде) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Уравнение идеального газа в дифференциальном виде

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Уравнение идеального газа в дифференциальном виде) в состояние (Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном видеT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pУравнение идеального газа в дифференциальном виде. После сокращения на T получим: Уравнение идеального газа в дифференциальном виде.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Уравнение идеального газа в дифференциальном виде

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Уравнение идеального газа в дифференциальном виде. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном виде

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Уравнение идеального газа в дифференциальном виде) в состояние (Уравнение идеального газа в дифференциальном виде), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Уравнение идеального газа в дифференциальном виде. После сокращения на p получим: Уравнение идеального газа в дифференциальном виде

Уравнение идеального газа в дифференциальном виде

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pУравнение идеального газа в дифференциальном виде

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Уравнение идеального газа в дифференциальном виде

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном виде

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Уравнение идеального газа в дифференциальном виде) в состояние (Уравнение идеального газа в дифференциальном виде), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Уравнение идеального газа в дифференциальном виде. После сокращения на V получим: Уравнение идеального газа в дифференциальном виде

Уравнение идеального газа в дифференциальном виде

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Уравнение идеального газа в дифференциальном виде

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Уравнение идеального газа в дифференциальном виде

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном виде

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Уравнение идеального газа в дифференциальном виде

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Уравнение идеального газа в дифференциальном виде, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Уравнение идеального газа в дифференциальном виде

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Уравнение идеального газа в дифференциальном виде Уравнение идеального газа в дифференциальном видеРазделив уравнение (2) на уравнение (1) и учитывая, что Уравнение идеального газа в дифференциальном видеполучим: Уравнение идеального газа в дифференциальном видегде Уравнение идеального газа в дифференциальном видеУравнение идеального газа в дифференциальном видеНайдем значение искомой величины: Уравнение идеального газа в дифференциальном виде

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Уравнение идеального газа в дифференциальном виде

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Уравнение идеального газа в дифференциальном виде

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Уравнение идеального газа в дифференциальном виде— универсальная газовая постоянная.
  3. Уравнение Клапейрона: Уравнение идеального газа в дифференциальном виде
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Уравнение идеального газа в дифференциальном виде

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа).

Уравнение Клапейрона-Менделеева (1834 г) устанавливает связь между объемом V, давлением P и абсолютной температурой Т для газа:

n – число молей газа Уравнение идеального газа в дифференциальном виде;

P – давление газа, Па;

V – объем газа, м 3 ;

T – абсолютная температура газа, К;

R – универсальная газовая постоянная 8,314 Дж/моль×K.

Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:

Уравнение идеального газа в дифференциальном виде

Из уравнения Клапейрона-Менделеева следует три закона:

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Конспект по теме «Уравнение Клапейрона-Менделеева»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

№24. Уравнение Клапейрона-Менделеева. Уравнение состояния идеального газа. Молярная газовая постоянная.

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

Уравнение идеального газа в дифференциальном виде

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим Уравнение идеального газа в дифференциальном видеили Уравнение идеального газа в дифференциальном виде

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

Уравнение идеального газа в дифференциальном виде

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клапейрона.

Уравнение Клапейрона можно записать в другой форме.

Уравнение идеального газа в дифференциальном виде

Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Уравнение идеального газа в дифференциальном виде

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

Ее численное значение в СИ R = 8,31 Дж/моль·К

Уравнение идеального газа в дифференциальном виде

называется уравнением состояния идеального газа.

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре T находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV=RT для нагретого газа: p (V + ΔV ) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A.

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Из уравнения состояния вытекает связь между давлением, объемом и температурой идеального газа, который может находиться в двух любых состояния.

Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 – ко второму состоянию, то согласно уравнению состояния для газа данной массы

Уравнение идеального газа в дифференциальном виде= Уравнение идеального газа в дифференциальном видеи Уравнение идеального газа в дифференциальном виде= Уравнение идеального газа в дифференциальном виде

Правые части равны, следовательно, равны и левые

Уравнение идеального газа в дифференциальном виде= Уравнение идеального газа в дифференциальном виде= const

Это уравнение называется уравнением Клапейрона

Процессы, при которых один из параметров состояния газа остается постоянным называют изопроцессами.

Газовые законы – это законы, описывающие изопроцессы в идеальном газе.

Газовые законы были открыты экспериментально, но все они могут быть получены из уравнения Менделеева-Клапейрона.

Рассмотрим каждый из них.

Изотермический процесс – процесс перехода идеального газа из одного состояния в другое без изменения температуры.

Закон, описывающий связь между параметрами газа при таком процессе, называется закон Бойля-Мариотта в честь двух учёных, практически одновременно выведших его: англичанина Роберта Бойля и француза Эдма Мариотта (рис. 2). Запишем его:

Получаем: Уравнение идеального газа в дифференциальном видедля любых различных состояний газа, или же просто:

Уравнение идеального газа в дифференциальном виде— закон Бойля-Мариотта

Из этого закона, очевидно, следует обратно пропорциональная связь давления и объёма: при увеличении объёма наблюдается уменьшение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть P и V, имеет следующий вид и называется изотермой:

Уравнение идеального газа в дифференциальном виде

Разным постоянным температурам соответствуют различные температуры.

Изотермическим процессом приближенно можно считать процесс медленного сжатия воздуха или расширение газа под поршнем насоса при откачке его из сосуда.

Изобарный (или изобарический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении давления.

Впервые такой процесс рассмотрел французский учённый Жозеф-Луи Гей-Люссак, поэтому закон носит его имя.

Получаем: Уравнение идеального газа в дифференциальном видедля любых различных состояний газа, или же просто:

Уравнение идеального газа в дифференциальном виде— закон Гей-Люссака

Из этого закона очевидно следует прямо пропорциональная связь между температурой и объёмом: при увеличении температуры наблюдается увеличение объёма, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и V, имеет следующий вид и называется изобарой

Следует обратить внимание на то, что работая с абсолютной шкалой температур, на графике присутствует область, близкая к абсолютному нулю температур, в которой данный закон не выполняется. Поэтому прямую в области, близкой к нулю, следует изображать пунктирной линией.

Изохорный (или изохорический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении объёма .

Процесс рассмотрен впервые французом Жаком Шарлем, поэтому закон носит его имя. Запишем закон Шарля:

Получаем: Уравнение идеального газа в дифференциальном видедля любых различных состояний газа, или же просто:

Уравнение идеального газа в дифференциальном виде— закон Шарля

Из этого закона очевидно следует прямо пропорциональная связь между температурой и давлением: при увеличении температуры наблюдается увеличение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и P, имеет следующий вид и называется изохорой

Уравнение идеального газа в дифференциальном виде

В районе абсолютного нуля для графиков изохорного процесса также существует лишь условная зависимость, поэтому прямую также следует доводить до начала координат пунктиром.

Стоит обратить внимание, что именно такая зависимость температуры от давления и объёма при изохорных и изобарных процессах соответственно определяет эффективность и точность измерения температуры с помощью газовых термометров.

Интересен также тот факт, что исторически первыми были открыты именно изопроцессы, которые, как мы показали, являются частными случаями уравнения состояния, а уже потом уравнения Клапейрона и Менделеева-Клапейрона. Хронологически сначала были исследованы процессы, протекающие при постоянной температуре, затем при постоянном объёме а последними – изобарические процессы.

Теперь для сравнения всех изопроцессов мы собрали их в одну таблицу Обратите внимание, что графики изопроцессов в координатах, содержащих неизменяющийся параметр, собственно говоря, и выглядят как зависимость константы от какой-либо переменной. Уравнение идеального газа в дифференциальном виде

До какой температуры нужно изобарически охладить некоторую массу газа с начальной температурой 37º C , чтобы объем газа уменьшился при этом на одну четверть?

Изобарный процесс описывается законом Гей-Люссака:

Газ нужно охладить до температуры 233К

В закрытом сосуде находится газ под давлением 200 кПа. Каким станет давление газа, если температуру повысить на 30%?

Так как сосуд с газом закрытый, объем газа не меняется. Изохорный процесс описывается законом Шарля:

Ответ Давление газа станет равным 260 кПа.

Задание 3 Представить этот цикл в координатах ( p , T ) и ( V , T )

Уравнение идеального газа в дифференциальном виде

Уравнение идеального газа в дифференциальном виде

* Как будет выглядеть график данного процесса в координатах P-V?

📺 Видео

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Уравнение идеального газа: PV = nRT | Газы.Молекулярно-кинетическая теория | Химия (видео 1)Скачать

Уравнение идеального газа: PV = nRT | Газы.Молекулярно-кинетическая теория | Химия (видео 1)

29. Адиабатический процесс. Уравнение ПуассонаСкачать

29. Адиабатический процесс. Уравнение Пуассона

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/

Физика 10 Идеальный газ Основное уравнение МКТ идеального газа Решение задачСкачать

Физика 10 Идеальный газ  Основное уравнение МКТ идеального газа  Решение задач

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)Скачать

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»
Поделиться или сохранить к себе: