Численные методы решения гиперболических дифференциальных уравнений с двумя независимыми переменными разработаны достаточно подробно и успешно используются для математического моделирования на ЭВМ в различных областях науки и техники.
Рассмотрим здесь коротко метод характеристик, основанный на переходе от уравнений частных производных к численному решению обыкновенных дифференциальных уравнений типа (1.8,1.10,1.11).
Наиболее характерным является случай скалярного уравнения в частных производных первого порядка (1.2) при его записи в характеристической форме:
Пусть кривая АВ, несущая начальные данные, разбита на малые отрезки (рис. 1.1). Численное интегрирование (1) заключается в построении характеристических кривых АЛ Л , ВВ’В».,012. кг.д. и значений и вдоль них. Например, при использовании метода Эйлера на заданной кривой А*В> при t =/° + т имеем vx = у0 + г/о + О (г 2 ), х = х0 + Лот + 0(т 2 ).
Методом Эйлера с пересчетом можно добиться второго порядка аппроксимации и более высокого, если использовать метод Рунге—Кутта.
Отметим два важных момента численного решения (1). Во-первых, кривые А’в А»В> > . . . . или шаги г можно задавать произвольно, исходя
лишь из требований точности, во-вторых, имеется возможность построения обобщенного решения для разрывных начальных данных на АВ, по крайней мере для области с непересекающимися характеристиками.
Изложенный метод характеристик применим и для уравнений общего вида (1.9) при I >1, если собственные числа матрицы Л равны, т.е. наклоны X/ всех характеристик одинаковы. Таковы, например, уравнения полосы для нелинейных уравнений в частных производных первого порядка [6], но при этом возрастают требования к гладкости начальных данных.
Задача Коши для квазилинейной системы (1.9) при I > 2 приводит к необходимости приближенного решения следующей элементарной задачи: в близких точках А и В известны и (Л), и(Я) и соответственно Х/(Л), X/ (В), надо найти и (Я) в точке Я (рис. 1.2). Пусть положение точки Я неизвестно. Тогда алгоритм нахождения координат точки Я — г н =< хн> состоит из следующих этапов:
— по усредненным в точке /1 и5 сг^, т в параметрам вычисляем наклоны характеристик X/ = tg 2 ) (h =
— заменяя в условиях совместности (1.10) производные через разностные отношения dn/dtf = (и(Я)-и(/)У(Г/7-//) + 0(h) (/ = 1. /), как
в методе Эйлера для обыкновенных дифференциальных уравнений, определяя и(/) для промежуточных 1 2 ).
Для / = 2 в (1.9) (этот момент важен для последующего изложения) можно добиться второго порядка точности, если повторить первые два этапа (произвести пересчет ч(Я)) с использованием аппроксимации производных через центральные разности в точках tiH = (тн + г*)/2 (/ = 1, 2), т.е. получить rHi и (Я) с погрешностью 0(Л 3 )’.При этом, очевидно, отпадает необходимость интерполяции по точкам А и В.
Пусть теперь на кривой АВ в близко расположенных L узлах известны начальные данные и (рис. 1.3). Решая элементарные задачи для каждой пары узлов на АВ, получим L—1 узлов на А’В L — 2 узлов на А»В» и т.д., пока не получим точку Я, ограничивающую область влияния
АВ. Построенные таким образом узлы образуют характеристическую сетку внутри в общем случае криволинейного треугольника АВН.
Относительно изложенной выше классической схемы метода характеристик следует сделать ряд замечаний.
- 1. Случай / =2 в (1.9) выделяется не только возможностью построения схемы расчета второго порядка, но и более слабыми требованиями к гладкости начальных данных. Например, для соответствующих линейных уравнений легко построить обобщенные, разрывные решения.
- 2. Случай I >2 включает этап интерполяции, что подразумевает непрерывность самих функций и их производных первого порядка.
- 3. Характеристическая сетка, выстраиваемая в процессе счета, наряду с несомненными достоинствами, связанными с правильным определением области влияния и корректной формулировкой начальных и граничных условий, не всегда удобна в практике. Кроме того, для квазилинейных уравнений возможны области сильного сгущения и разрежения узлов и соответственно сильная потеря точности вычислений.
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения

и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения 
· если 
· если 
· если 
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение 



II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты 
2. Вычислить выражение 
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения 
4. Записать уравнение характеристик:

5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· 
в случае уравнения гиперболического типа;
· 
в случае уравнения параболического типа;
· 
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные 

· в случае уравнения гиперболического типа в качестве 

· в случае уравнения параболического типа в качестве 





· в случае уравнения эллиптического типа в качестве 

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:





8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: 



б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при 
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:


б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных 
а в качестве 


7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при 
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения

и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: 
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при 

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.










Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

где 





Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

В уравнении (16) приравняем к нулю коэффициенты при 
Откуда 


где 
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты 
10. Вычислим выражение 

11. 
12. Запишем уравнение характеристик:

5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: 

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:

Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

В уравнении (21) приравняем к нулю коэффициенты при 
Откуда 


Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

где 
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.










Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Типовые дифференциальные уравнения,описывающие поля
Видео:2.1. Метод характеристик. Задача Коши для гиперболического уравнения на плоскости.Скачать

Дифференциальные уравнения 2-го порядка с двумя независимыми переменными
Многие задачи математической физики приводят к дифференциальным уравнениям с частными производными. Наиболее часто встречаются дифференциальные уравнения 2-го порядка с несколькими независимыми переменными. Рассмотрим сначала дифференциальные уравнения с двумя независимыми переменными.
Уравнением с частными производными 2-го порядка с двумя независимыми переменными X, у называется соотношение между
неизвестной функцией А(х, у) и ее частными производными до 2-го
Аналогично записывается уравнение и для большего числа независимых переменных.
Уравнение (1.20) называется линейным относительно старших производных, если оно имеет вид
Если коэффициенты a j j, # 12 , # 22 зависят не только от X и у ,
а являются, подобно F функциями х, у, А,-,-, то такое урав-
нение называется квазилинейным.
Уравнение называется линейным, если оно линейно как относи-
тельно старших производных -,-,-, так и относительно
функции Л и ее первых производных —,_:
где Я ц, Я12, #22’ ? f — функции только X и у . Если коэффициенты уравнения (1.22) не зависят от X и у , то оно представляет собой линейное уравнение с постоянными коэффициентами. Уравнение называется однородным, если f(x, у) = О . С помощью преобразования переменных
допускающего обратное преобразование, можно получить новое уравнение, эквивалентное исходному. Естественно поставить вопрос: как выбрать % и Т! , чтобы уравнение в этих переменных имело наиболее простую форму?
Дадим ответ на поставленный вопрос для уравнений, линейных относительно старших производных вида (1.20), с двумя независимыми переменными X и у :


т.е. уравнение остается линейным.
Отметим, что если преобразование переменных линейно, то
F = Ft , так как вторые производные от ^ и Т| в формулах (1.23)
равны нулю и F не получает дополнительных слагаемых от преобразования вторых производных.
Выберем переменные И Т] так, чтобы коэффициент был
равен нулю. Рассмотрим уравнение с частными производными 1-го порядка
Пусть Z — Ф (х,у) — какое-нибудь частное решение этого
уравнения. Если положить ? = Ф (х,у), то коэффициент Cl j j будет
равен нулю. Таким образом, упомянутая выше задача.о выборе новых независимых переменных связана с решением уравнения (1.25). Докажем следующие леммы.
1. Если Z = ф (х,у) является частным решением уравнения
с представляет собой общий интеграл обыкновенного лиЛгЬепенттиапьного упавнения
2. Если ф(-^? З 7 ) _ с представляет собой общий интеграл обыкновенного дифференциального уравнения
то функция Z = ф(х, jy) удовлетворяет уравнению (1.26).
Докажем первую лемму. Поскольку функция Z = ф fay) удовлетворяет уравнению (1.26), то равенство
где (р =-, ф = ——,является тождеством, так как оно удовле-
творяется для всех X, у в той области, где задано решение. Соотношение у)
с является общим интегралом уравнения (1.26),
если функция у, определенная из неявного соотношения ф(х, у’) = С
, удовлетворяет уравнению (1.26). Пусть у — f (х, С) есть эта функция; тогда
где скобки и значок у = f<x, С) указывают, что в правой части равенства (1.28) переменная у не является независимой переменной, а
имеет значение, равное /(*> С). Отсюда следует, что у = / (х, С) удовлетворяет уравнению (1.26), так как
поскольку выражение в квадратных скобках равно нулю при всех значениях X, у, а не только при у = А*,с).
Уравнение (1.26) распадается на два уравнения:
из которого следует инвариантность типа уравнения при преобразовании переменных, так как функциональный определитель (якобиан) D преобразования переменных отличен от нуля. В различных точках области определения уравнение может принадлежать различным типам.
Рассмотрим область G, во всех точках которой уравнение имеет один и тот же тип. Через каждую точку области G проходят две характеристики, причем для уравнений гиперболического типа характеристики действительны и различны, для уравнений эллиптического типа — комплексны и различны, а для уравнений параболического типа обе характеристики действительны и совпадают между собой.
Разберем каждый из этих случаев в отдельности.
1. Для уравнения гиперболического типа #12 — &n&22 ^ О и правые части уравнений (1.29) и (1.30) действительны и различны. Общие интегралы их — ^ц^22 а 11 а 22 » имеют место следующие канонические формы уравнения (1.21):
💥 Видео
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

3.2 Решение уравнений гиперболического типа методом характеристикСкачать

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

2. Линейные уравнения с переменными коэффициентамиСкачать

2. Приведение уравнений второго порядка к каноническому видуСкачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать






































































