Уравнение графика функции с модулями решение

Графики прямой, параболы, гиперболы, с модулем

Уравнение графика функции с модулями решение

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Уравнение графика функции с модулями решение

Уравнение графика функции с модулями решение

Уравнение графика функции с модулями решение

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

Уравнение графика функции с модулями решение

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Уравнение графика функции с модулями решениеПолучается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Уравнение графика функции с модулями решение

Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!

Уравнение графика функции с модулями решение
А после этого отражаем относительно оси «y» то, что мы получили справа налево:

Уравнение графика функции с модулями решение

Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x ₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

Уравнение графика функции с модулями решение

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Уравнение графика функции с модулями решение

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Уравнение графика функции с модулями решение

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

Уравнение графика функции с модулями решение

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.
Уравнение графика функции с модулями решение

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

Уравнение графика функции с модулями решение

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

Уравнение графика функции с модулями решение

А что будет, если мы добавим в знаменателе « − 1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Уравнение графика функции с модулями решениеГлупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Уравнение графика функции с модулями решение

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Уравнение графика функции с модулями решение

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Уравнение графика функции с модулями решение

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

Уравнение графика функции с модулями решение

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:

Уравнение графика функции с модулями решение
Для параболы с одним модулем будет два кусочно-заданных графика:
Уравнение графика функции с модулями решение

C двумя модулями кусочно-заданных графиков будет четыре:

Уравнение графика функции с модулями решениеТаким способом, медленно и кропотливо можно построить любой график!

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Уравнение графика функции с модулями решение

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:График функции с модулемСкачать

График функции с модулем

Графики функций, содержащих переменную под знаком модуля. Обобщающее повторение при подготовке к экзамену

Разделы: Математика

Определение модуля

Алгебрагическое определение: | x | = Уравнение графика функции с модулями решение

Геометрическое определение: модулем числа называется расстояние от точки, изображающей это число, до начала отсчета.

Уравнение графика функции с модулями решение

Понятие модуля впервые вводится в 6 классе, в 7 классе рассматривается линейная функция и ее график и уже можно показывать построение несложных графиков функций, содержащих модуль. Далее, по мере изучения различных функций, их свойств, каждую такую тему можно заканчивать рассмотрением более сложных графиков, в том числе с модулем. В этой статье рассматриваются основные приемы построения графиков таких функций.

I. На алгебрагическом определении основан метод «раскрытия модуля на промежутках».

Например: | x + 2 | = Уравнение графика функции с модулями решение| x + 2 | = Уравнение графика функции с модулями решение

Уравнение графика функции с модулями решениеЭтот метод можно применять при построении графиков функций, содержащих один или более модулей. Например, построим график функции у = | x + 2 | – 2x + 1 , предварительно упростив ее.

у = Уравнение графика функции с модулями решениеу = Уравнение графика функции с модулями решение

Если модулей несколько, то каждый из них раскрываем на промежутках относительно точек, обращающих каждый из них в нуль. Например, построим график функции у = | 3 – x | – x + | x + 2 | + 1.

Уравнение графика функции с модулями решениеФункцию записываем как кусочно-заданную:

у = Уравнение графика функции с модулями решение

Подобно тому, как числовая прямая точками – 2 и 3 разбивается на промежутки, координатная плоскость прямыми х = – 2 и х = 3 разбивается на части («полосы»), в каждой из которых строим свой график. Заметим, что данная функция непрерывна, поэтому на «границах» части графика должны соединяться.

Уравнение графика функции с модулями решениеII. Этот метод можно применять к функциям разных видов.

Например, построим график функции у = | log2 x – 1 | – log0,5 x.

Заметим, что х > 0.

Уравнение графика функции с модулями решение

Построим сначала график функции у = х 2 – 2х – 3. Графиком этой функции является парабола, ветви которой направлены вверх. Координаты ее вершины: х = 1, у = – 4. Точки пересечения параболы с осями координат: (0; – 3); (– 1; 0); (3; 0). Далее выполняем отображение части графика, лежащей в нижней полуплоскости, относительно оси абсцисс.

2) у = f(| x |). Используем определение модуля: f(| x |) = Уравнение графика функции с модулями решение

Чтобы построить график такой функции строим график функции у = f(x) и берем ту его часть, где х > 0 (в правой полуплоскости). Затем эту часть симметрично отображаем в левую полуплоскость, где х 2 – 2| х | – 3. Сначала строим график функции у = х 2 – 2х – 3, далее выполняем указанные преобразования.

Уравнение графика функции с модулями решение

3) Построим график функции y = | f(| x |)|, например, y = | x 2 – 2| х | – 3 |, выполним последовательно преобразования, рассмотренные в пунктах 2 и 1.

Уравнение графика функции с модулями решение

4. Рассмотрим зависимость | y | = f(x). Ее нельзя назвать функцией, так как не выполняется условие: каждому значению х должно соответствовать единственное значение у.

Рассмотрим построение графика такой зависимости (можно говорить «графика уравнения»). Используем определение модуля: у = f(x), если у > 0, – у = f(x), y = – f(x), если у 0; чтобы построить график в нижней полуплоскости (где у 2 – 2х – 3

Уравнение графика функции с модулями решение

Заметим, что графики, не относящиеся к рассмотренным частным случаям, следует строить « раскрывая модули на промежутках».

Уравнение графика функции с модулями решение

1

0

– 1

y

0

Уравнение графика функции с модулями решение

Уравнение графика функции с модулями решение

x

IV. Приведем некоторые примеры

1. Построим график уравнения | y | = arccos| x |.

Уравнение графика функции с модулями решение

2. Графическим способом можно решать и неравенства с двумя переменными. Например, решением неравенства | y | 2 – 4 | x | + 3 |; y = Уравнение графика функции с модулями решение+ 1.

2. Решите графически уравнения c одной и двумя переменными: | 3 – x | – 3 = 2| x | – x 2 ; | y | = 2| x | – x 2 ; Уравнение графика функции с модулями решение= | x – 2,5 | –1,5.

3. Решите графически неравенства с двумя переменными: | y | > x 2 4x + 3; | x | + | y | 15.11.2011

📸 Видео

Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

Уравнения с модулемСкачать

Уравнения с модулем

Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnlineСкачать

Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnline

8 класс, 23 урок, Графики функций, содержащих модулиСкачать

8 класс, 23 урок, Графики функций, содержащих модули

Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать

Математика без Ху!ни. Нахождение асимптот, построение графика функции.

Модуль линейной функцииСкачать

Модуль линейной функции

ОГЭ Задание 23 График ломанаяСкачать

ОГЭ Задание 23 График   ломаная

Математика | Двойной модуль. ОГЭСкачать

Математика | Двойной модуль. ОГЭ

Графики функций с модулем | Дробно-линейная функцияСкачать

Графики функций с модулем | Дробно-линейная функция

Графики функций с несколькими модулямиСкачать

Графики функций с несколькими модулями

График функции с модулем ★ Быстрый способСкачать

График функции с модулем ★ Быстрый способ

График функции с модулем. #ShortsСкачать

График функции с модулем. #Shorts

Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

Функция модуль Х / Как ее построить ? / y = |x|Скачать

Функция модуль Х / Как ее построить ? / y = |x|

Как раскрыть модуль. Неравенство и график с модулем ЕГЭСкачать

Как раскрыть модуль. Неравенство и график с модулем ЕГЭ

Уравнение модуль в модулеСкачать

Уравнение модуль в модуле

ЧТО ТАКОЕ МОДУЛЬ ЧИСЛА? #shorts #егэ #огэ #математика #профильныйегэСкачать

ЧТО ТАКОЕ МОДУЛЬ ЧИСЛА? #shorts #егэ #огэ #математика #профильныйегэ

Как построить график функции без таблицыСкачать

Как построить график функции без таблицы
Поделиться или сохранить к себе: