Уравнение гиперболы за что отвечают коэффициенты

Гипербола: определение, функция, формула, примеры построения

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

Видео:График – гипербола. Находим коэффициенты в формулеСкачать

График – гипербола. Находим коэффициенты в формуле

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Уравнение гиперболы за что отвечают коэффициенты

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k 0)
  • y = -x (при k Алгоритм построения гиперболы

Пример 1

Дана функция y = 4 /x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

<table data-id="195" data-view-id="195_92196" data-title="Пример значений гиперболы" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

<td data-cell-id="A1" data-x="0" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="x» data-order=»x» style=»min-width:26.9912%; width:26.9912%;»> x

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="y» data-order=»y» style=»min-width:24.3363%; width:24.3363%;»> y

<td data-cell-id="C1" data-x="2" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="Расчет y» data-order=»Расчет y» style=»min-width:48.6726%; width:48.6726%;»> Расчет y0,58

<td data-cell-id="C2" data-x="2" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" / 0,5 = 8″ data-order=» 4 / 0,5 = 8″> 4 / 0,5 = 814

<td data-cell-id="C3" data-x="2" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" / 1 = 4″ data-order=» 4 / 1 = 4″> 4 / 1 = 422

<td data-cell-id="C4" data-x="2" data-y="4" data-db-index="4" data-cell-type="text" data-original-value=" / 2 = 2″ data-order=» 4 / 2 = 2″> 4 / 2 = 241

<td data-cell-id="C5" data-x="2" data-y="5" data-db-index="5" data-cell-type="text" data-original-value=" / 4 = 1″ data-order=» 4 / 4 = 1″> 4 / 4 = 180,5

<td data-cell-id="C6" data-x="2" data-y="6" data-db-index="6" data-cell-type="text" data-original-value=" / 8 = 0,5″ data-order=» 4 / 8 = 0,5″> 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Уравнение гиперболы за что отвечают коэффициенты

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

<table data-id="196" data-view-id="196_23937" data-title="Пример значений гиперболы_2" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

<td data-cell-id="A1" data-x="0" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="x» data-order=»x» style=»min-width:26.9912%; width:26.9912%;»> x

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="y» data-order=»y» style=»min-width:24.3363%; width:24.3363%;»> y

<td data-cell-id="C1" data-x="2" data-y="1" data-db-index="1" data-cell-type="text" data-original-value="Расчет y» data-order=»Расчет y» style=»min-width:48.6726%; width:48.6726%;»> Расчет y-0,5-8

<td data-cell-id="C2" data-x="2" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" / -0,5 = -8″ data-order=» 4 / -0,5 = -8″> 4 / -0,5 = -8-1-4

<td data-cell-id="C3" data-x="2" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" / -1 = -4″ data-order=» 4 / -1 = -4″> 4 / -1 = -4-2-2

<td data-cell-id="C4" data-x="2" data-y="4" data-db-index="4" data-cell-type="text" data-original-value=" / -2 = -4″ data-order=» 4 / -2 = -4″> 4 / -2 = -4-4-1

<td data-cell-id="C5" data-x="2" data-y="5" data-db-index="5" data-cell-type="text" data-original-value=" / -4 = -1″ data-order=» 4 / -4 = -1″> 4 / -4 = -1-8-0,5

<td data-cell-id="C6" data-x="2" data-y="6" data-db-index="6" data-cell-type="text" data-original-value=" / -8 = -0,5″ data-order=» 4 / -8 = -0,5″> 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Уравнение гиперболы за что отвечают коэффициенты

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Видео:Гипербола / влияние коэффициентов на график функцииСкачать

Гипербола / влияние коэффициентов на график функции

Что такое гипербола

Уравнение гиперболы за что отвечают коэффициенты

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как найти коэффициент k, если дан график гиперболы.Скачать

Как найти коэффициент k, если дан график гиперболы.

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Уравнение гиперболы за что отвечают коэффициенты

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Уравнение гиперболы за что отвечают коэффициенты

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Уравнение гиперболы за что отвечают коэффициенты

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Уравнение гиперболы за что отвечают коэффициенты
  • Выделяем квадраты в знаменателях:
    Уравнение гиперболы за что отвечают коэффициенты
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Уравнение гиперболы за что отвечают коэффициенты
    Уравнение гиперболы за что отвечают коэффициенты

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Уравнение гиперболы за что отвечают коэффициенты
      • Найдем асимптоты гиперболы. Вот так: Уравнение гиперболы за что отвечают коэффициенты
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Уравнение гиперболы за что отвечают коэффициенты

    на черновике выражаем:

    Уравнение гиперболы за что отвечают коэффициенты

    Уравнение распадается на две функции:

    Уравнение гиперболы за что отвечают коэффициенты

    — определяет верхние дуги гиперболы (то, что ищем);

    Уравнение гиперболы за что отвечают коэффициенты

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Уравнение гиперболы за что отвечают коэффициенты

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Уравнение гиперболы за что отвечают коэффициенты

    Видео:Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

    Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Уравнение гиперболы за что отвечают коэффициенты

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Уравнение гиперболы за что отвечают коэффициенты

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Задание 10. ЕГЭ профиль. Гипербола. Находим коэффициенты по сдвигам.Скачать

    Задание 10. ЕГЭ профиль. Гипербола. Находим коэффициенты по сдвигам.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Уравнение гиперболы за что отвечают коэффициенты

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Уравнение гиперболы за что отвечают коэффициенты

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Уравнение гиперболы за что отвечают коэффициенты

    Запишем это уравнение в координатной форме:

    Уравнение гиперболы за что отвечают коэффициенты

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Уравнение гиперболы за что отвечают коэффициенты

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:ВСЁ ПРО ГРАФИКИ ЕГЭ 2024 (Прямая, Парабола, Окружность, Модуль, Гипербола, Корень, Области, Сдвиги)Скачать

    ВСЁ ПРО ГРАФИКИ ЕГЭ 2024 (Прямая, Парабола, Окружность, Модуль, Гипербола, Корень, Области, Сдвиги)

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Уравнение гиперболы за что отвечают коэффициенты

    На самом деле для фокуса F2 и директрисы d2 условие

    Уравнение гиперболы за что отвечают коэффициенты

    можно записать в координатной форме так:

    Уравнение гиперболы за что отвечают коэффициенты

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Уравнение гиперболы за что отвечают коэффициенты

    Видео:Новая задача №9 на гиперболу из ЕГЭ 2022 по математикеСкачать

    Новая задача №9 на гиперболу из ЕГЭ 2022 по математике

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Уравнение гиперболы за что отвечают коэффициенты

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Уравнение гиперболы за что отвечают коэффициенты

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Уравнение гиперболы за что отвечают коэффициенты

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Видеоурок "Гипербола"Скачать

    Видеоурок "Гипербола"

    Гипербола

    Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

    Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
    Определение гиперболы.
    График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

    Что нужно знать, чтобы построить гиперболу?
    Теперь обсудим свойства гиперболы:

    Уравнение гиперболы за что отвечают коэффициенты гипербола, где k y≠0 это вторая асимптота.
    И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
    k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
    Построим примерный график гиперболы.
    Уравнение гиперболы за что отвечают коэффициенты

    Пример №2:
    $$y=frac-1$$
    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
    х+2≠0
    х≠-2 это первая асимптота

    Находим вторую асимптоту.

    Дробь (color <frac>) отбрасываем
    Остается y≠ -1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
    Уравнение гиперболы за что отвечают коэффициенты

    Уравнение гиперболы за что отвечают коэффициенты

    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
    1+х≠0
    х≠-1 это первая асимптота.

    Находим вторую асимптоту.

    Остается y≠1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
    Уравнение гиперболы за что отвечают коэффициенты

    Уравнение гиперболы за что отвечают коэффициенты

    3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

    Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
    Уравнение гиперболы за что отвечают коэффициенты

    4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

    Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

    Вторая ось симметрии это прямая y=-x.

    Уравнение гиперболы за что отвечают коэффициенты

    5. Гипербола нечетная функция.

    6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

    а) Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
    x-1≠0
    х≠1 это первая асимптота.

    Находим вторую асимптоту.

    Остается y≠ -1 это вторая асимптота.

    б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

    в) Возьмем несколько дополнительных точек и отметим их на графике.
    х=0 y=0
    x=-1 y=-0,5
    x=2 y=-2
    x=3 y=-1,5

    г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
    х ∈ (-∞;1)U(1;+∞).

    д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
    y ∈ (-∞;-1)U(-1;+∞).

    е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
    Уравнение гиперболы за что отвечают коэффициенты

    Уравнение гиперболы за что отвечают коэффициенты

    7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

    🎬 Видео

    ИССЛЕДОВАНИЕ ГИПЕРБОЛЫСкачать

    ИССЛЕДОВАНИЕ ГИПЕРБОЛЫ

    Задание 10. ЕГЭ профиль. Горизонтальные и вертикальные асимптоты гиперболы.Скачать

    Задание 10. ЕГЭ профиль. Горизонтальные и вертикальные асимптоты гиперболы.

    Парабола / квадратичная функция / влияние коэффициентовСкачать

    Парабола / квадратичная функция / влияние коэффициентов

    Гипербола. Функция k/x и её графикСкачать

    Гипербола. Функция k/x и её график

    ГРАФИК ГИПЕРБОЛА 👌 | y = k/x | ЗАЧЕМ КОЭФФИЦИЕНТ k? #математика #гиперболаСкачать

    ГРАФИК ГИПЕРБОЛА 👌 | y = k/x | ЗАЧЕМ КОЭФФИЦИЕНТ k? #математика #гипербола

    Гипербола и ее свойства - bezbotvyСкачать

    Гипербола и ее свойства - bezbotvy

    ОГЭ 2022. Задание 11. Сопоставить функции и графики. Обратная пропорциональность. ГиперболаСкачать

    ОГЭ 2022. Задание 11. Сопоставить функции и графики. Обратная пропорциональность. Гипербола

    Задание 10 Квадратичная функция Знаки коэффициентов а и сСкачать

    Задание 10 Квадратичная функция Знаки коэффициентов а и с

    Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

    Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

    Как легко составить уравнение параболы из графикаСкачать

    Как легко составить уравнение параболы из графика

    Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

    Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

    Как отличить параболу от гиперболы?! 🙃Скачать

    Как отличить параболу от гиперболы?! 🙃
    Поделиться или сохранить к себе: