Видео:Фокусы гиперболыСкачать
Определение гиперболы, решаем задачи вместе
Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.
Каноническое уравнение гиперболы имеет вид:
,
где a и b — длины полуосей, действительной и мнимой.
На чертеже ниже фокусы обозначены как и .
На чертеже ветви гиперболы — бордового цвета.
При a = b гипербола называется равносторонней.
Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.
Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:
.
Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.
Точки и , где
,
называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).
называется эксцентриситетом гиперболы.
Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.
Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.
Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,
Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.
То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.
Подставляем и вычисляем:
Получаем требуемое в условии задачи каноническое уравнение гиперболы:
.
Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .
Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:
.
Результат — каноническое уравнение гиперболы:
Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:
.
Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:
.
На чертеже расстояния обозначены оранжевыми линиями.
Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).
Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы
,
где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .
Пример 4. Дана гипербола . Составить уравнение её директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:
.
Получаем уравнение директрис гиперболы:
Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.
Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.
Асимптоты гиперболы определяются уравнениями
.
На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.
Уравнение гиперболы, отнесённой к асимптотам, имеет вид:
, где .
В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.
Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.
Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.
.
Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:
Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Решить задачи на гиперболу самостоятельно, а затем посмотреть решения
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) b = 4 , а один из фокусов в точке (5; 0)
2) действительная ось 6, расстояние между фокусами 8
3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы
Видео:Видеоурок "Гипербола"Скачать
Задача 28850 4.3.65) Найти каноническое уравнение.
Условие
4.3.65) Найти каноническое уравнение гиперболы с фокусами на оси Ох, проходящей через точки M1(6;-1) и M2(-8;-2sqrt(2))
Решение
Каноническое уравнение гиперболы с фокусами на оси Ох имеет вид
(x^2/a^2) — (y^2/b^2)=1
Подставим координаты точек М_(1) и М_(2) в уравнение и найдем а и b из системы:
подставляем в первое уравнение
(36/4b^2)-(1/b^2)=1
(9/b^2)-(1/b^2)=1
8/b^2=1
b^2=8
Видео:Неполное уравнение второго порядка. Эллипс, гипербола. ЗадачиСкачать
Уравнение гиперболы с фокусами на оси ох если она проходит через точки
Гипербола проходит через точки и . Найти уравнение гиперболы.
может быть записано так
Определению подлежат a 2 и b 2 . Подставим в это уравнение координаты первой точки и получим
Подставляя в уравнение гиперболы (1) координаты второй точки, получим
Решим систему уравнений
Умножая первое уравнение на 4, а второе на 3 и вычитая из второго первого, получим a 2 = 5. Подставим a 2 = 5 в первое уравнение и получим 20b 2 — 45 = 5b 2 , откуда b 2 = 3. Подставляя найденные значения a 2 и b 2 в (1), получим, что искомое уравнение имеет вид
🔍 Видео
Эллипс (часть 8). Решение задач. Высшая математика.Скачать
§23 Построение гиперболыСкачать
Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков АлександрСкачать
Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать
§21 Каноническое уравнение гиперболыСкачать
Лекция 31.2. Кривые второго порядка. Гипербола.Скачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Кривые второго порядкаСкачать
кривые второго порядка (решение задач)Скачать
165. Найти фокусы и эксцентриситет эллипса.Скачать
Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать
Кривые второго порядка. ЗадачиСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Задачи про гиперболу на плоскостиСкачать
Фокусы эллипсаСкачать