Уравнение гиперболы имеет вид в эконометрике

Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Написать каноническое уравнение гиперболы.  Дан эксцентриситет

Гиперболические модели

Среди класса нелинейных функций, параметры которых без затруднений оцениваются методом наименьших квадратов, следует указать равностороннюю гиперболу

Уравнение гиперболы имеет вид в эконометрикеТакие модели могут быть использованы не только для характеристики связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота, т.е. на микроэкономичеком уровне, но и на макроуровне. Классическим примером является кривая Филлипса, которая характеризуюет нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у

Английский экономист А. В. Филлипс, проанализировав данные более чем за 100-летний период, в конце 50-х гг. XX в. установил обратную связь процента прироста заработной платы от уровня безработицы.

Для равносторонней гиперболы вида, 1/Х заменив на z, получим линейное уравнение регрессии y = a + bz, оценка параметров которого в задачах эконометрики производится с помощью метода наименьших квадратов. Система нормальных уравнений будет выглядеть так:

Уравнение гиперболы имеет вид в эконометрикеДля кривой Филлипса y = 0,00679 + 0,1842/x величина параметра a, равная 0,00679, значит, что с ростом уровня безработицы темп прироста заработной платы в своем пределе стремится к нулю. Таким образом, можно определить тот уровень безработицы, при котором заработная плата оказывается стабильной и темп ее прироста равен нулю. При b

Видео:Эконометрика. Нелинейная регрессия. Гипербола.Скачать

Эконометрика. Нелинейная регрессия. Гипербола.

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx 2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии: Уравнение гиперболы имеет вид в эконометрике
  3. Квадратичное уравнение регрессии: Уравнение гиперболы имеет вид в эконометрике
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии: Уравнение гиперболы имеет вид в эконометрике
  2. Экспоненциальное уравнение регрессии: Уравнение гиперболы имеет вид в эконометрике
  3. Степенное уравнение регрессии: Уравнение гиперболы имеет вид в эконометрике
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .
Уравнение гиперболы имеет вид в эконометрике

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .
Уравнение гиперболы имеет вид в эконометрике

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
ГодФактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), yСреднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

Видео:Эконометрика. Нелинейная регрессия. Полулогарифмические функции.Скачать

Эконометрика. Нелинейная регрессия. Полулогарифмические функции.

Эконометрика

Уравнение гиперболы имеет вид в эконометрике

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ

Кафедра экономико-метематических моделей

Тема 4. Множественная регрессия.

Вопросы

1. Нелинейная регрессия. Нелинейные модели и их линеаризация.

Нелинейная регрессия

При рассмотрении зависимости экономических показателей на основе реальных статистических данных с использованием аппарата теории вероятности и математической статистики можно сделать выводы, что линейные зависимости встречаются не так часто. Линейные зависимости рассматриваются лишь как частный случай для удобства и наглядности рассмотрения протекаемого экономического процесса. Чаще встречаются модели которые отражают экономические процессы в виде нелинейной зависимости.

Если между экономическими явлениями существуют не­линейные соотношения, то они выражаются с помощью со­ответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

    регрессии, нелинейные относительно включенных в анализ объясняющих пе­ременных, но линейные по оцениваемым параметрам: регрессии, нелинейные по оцениваемым параметрам.

Нелинейные регрессии по включаемым в нее объясня­ющим переменным, но линейные по оцениваемым пара­метрам

Данный класс нелинейных регрессий включает уравне­ния, в которых зависимая переменная линейно связана с параметрами. Примером могут служить:

полиномы разных степеней

Уравнение гиперболы имеет вид в эконометрике(полином k-й степени)

Уравнение гиперболы имеет вид в эконометрикеи равносторонняя гипербола

Уравнение гиперболы имеет вид в эконометрике.

При оценке параметров регрессий нелинейных по объясняю­щим переменным используется подход, именуе­мый «замена переменных». Суть его состоит в замене «нели­нейных» объясняющих переменных новыми «линейными» переменными и сведение нелинейной регрессии к линейной регрессии. К новой «преобразованной» регрессии может быть приме­нен обычный метод наименьших квадратов (МНК).

Полином любого порядка сводится к ли­нейной регрессии с ее методами оценивания параметров и проверки гипотез.

Среди нелинейной полиноминальной регрессии чаще всего используется парабола второй степени; в отдельных случаях — полином третьего порядка. Ограничение в ис­пользовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, менее однородна совокупность по резуль­тативному признаку.

Равносторонняя ги­пербола, для оценки параметров которой используется тот же подход «замены переменных» (1/x заменяют на переменную z) хорошо известна в эконометрике.

Она может быть использована, например, для характеристики связи удельных расходов сы­рья, материалов и топлива с объемом выпускаемой продукции. Также примером использования равносторонней ги­перболы являются кривые Филлипса и Энгеля..

Регрессии нелинейные по оцениваемым параметрам

К данному классу регрессий относятся уравнения, в которых зависимая переменная нелинейно связана с параметрами. Примером таких нелинейных регрессий являются функции:

• степенная — Уравнение гиперболы имеет вид в эконометрике;

• показательная — Уравнение гиперболы имеет вид в эконометрике;

• экспоненциальная — Уравнение гиперболы имеет вид в эконометрике

Если нелинейная модель внутренне линейна, то она с по­мощью соответствующих преобразований может быть при­ведена к линейному виду (например, логарифмированием и заменой переменных). Если же нелинейная модель внут­ренне нелинейна, то она не может быть сведена к линейной функции и для оценки её параметров используются итеративные процедуры, успешность которых зависит от вида уравнений и особен­ностей применяемого итеративного подхода.

Примером нелинейной по параметрам регрессии внут­ренне линейной является степенная функция, которая ши­роко используется в эконометрических исследованиях при изучении спроса от цен: Уравнение гиперболы имеет вид в эконометрике, где у — спрашиваемое количество; х — цена;

Данная модель нелинейна относительно оцениваемых параметров, т. к. включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логариф­мирование данного уравнения по основанию е приводит его к линейному виду Уравнение гиперболы имеет вид в эконометрике. Заменив пе­ременные и параметры, получим линейную регрессию, оцен­ки параметров которой а и b могут быть найдены МНК.

Ши­рокое использование степенной функции Уравнение гиперболы имеет вид в эконометрикесвязано это с тем, что параметр b в ней имеет четкое экономическое истолко­вание, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %.

Коэффициент эластичности можно определять и при наличии других форм связи, но только для степенной функ­ции он представляет собой постоянную величину, равную па­раметру b.

По семи предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений ( Х, млн. руб. ).

🎬 Видео

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Эконометрика. Множественная регрессия и корреляция.Скачать

Эконометрика. Множественная регрессия и корреляция.

§21 Каноническое уравнение гиперболыСкачать

§21 Каноническое уравнение гиперболы

§23 Построение гиперболыСкачать

§23 Построение гиперболы

Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.Скачать

Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.

Эконометрика. Неделя 1. Суть метода наименьших квадратов.Скачать

Эконометрика. Неделя 1. Суть метода наименьших квадратов.

Гипербола и её касательнаяСкачать

Гипербола и её касательная

Метод наименьших квадратов. Линейная аппроксимацияСкачать

Метод наименьших квадратов. Линейная аппроксимация

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Коэффициент детерминации. Основы эконометрикиСкачать

Коэффициент детерминации. Основы эконометрики

Эконометрика. Нелинейная регрессия. Степенная функция.Скачать

Эконометрика. Нелинейная регрессия. Степенная функция.

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера
Поделиться или сохранить к себе: