Уравнение гидролиз солей серной кислоты

Видео:ГИДРОЛИЗ СОЛЕЙ | 9 класс | Кратко и понятноСкачать

ГИДРОЛИЗ СОЛЕЙ | 9 класс | Кратко и понятно

Гидролиз солей

Водные растворы солей имеют разные значения рН и показывают различную реакцию среды — кислую, щелочную, нейтральную.

Например, водный раствор хлорида алюминия AlCl3 имеет кислую среду (рН 7), растворы хлорида натрия NaCl и нитрита свинца Pb(NO2)2 — нейтральную среду (pН = 7). Эти соли не содержат в своем составе ионы водорода Н + или гидроксид-ионы ОН — , которые определяют среду раствора. Чем же можно объяснить различные среды водных растворов солей? Это объясняется тем, что в водных растворах соли подвергаются гидролизу.

Слово «гидролиз» означает разложение водой («гидро» — вода, «лизис» — разложение).

Гидролиз — одно из важнейших химических свойств солей.

Гидролизом соли называется взаимодействие ионов соли с водой, в результате которого образуются слабые электролиты.

Сущность гидролиза сводится к химическому взаимодействию катионов или анионов соли с гидроксид-ионами ОН — или ионами водорода Н + из молекул воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). Химическое равновесие процесса диссоциации воды смещается вправо.

Поэтому в водном растворе соли появляется избыток свободных ионов Н + или ОН — , и раствор соли показывает кислую или щелочную среду.

Гидролиз — процесс обратимый для большинства солей. В состоянии равновесия только небольшая часть ионов соли гидролизуется.

Любую соль можно представить как продукт взаимодействия кислоты с основанием. Например, соль NaClO образована слабой кислотой HClO и сильным основанием NaOH.

В зависимости от силы исходной кислоты и исходного основания соли можно разделить на 4 типа:Уравнение гидролиз солей серной кислоты

Соли I, II, III типов подвергаются гидролизу, соли IV типа не подвергаются гидролизу

Рассмотрим примеры гидролиза различных типов солей.

I. Соли, образованные сильным основанием и слабой кислотой, подвергаются гидролизу по аниону. Эти соли образованы катионом сильного основания и анионом слабой кислоты, который связывает катион водорода Н + молекулы воды, образуя слабый электролит (кислоту).

Пример: Составим молекулярное и ионные уравнения гидролиза нитрита калия KNO2.

Соль KNO2 образована слабой одноосновной кислотой HNO2 и сильным основанием KОН, что можно изобразить схематически так:Уравнение гидролиз солей серной кислоты

Напишем уравнение гидролиза соли KNO2:Уравнение гидролиз солей серной кислоты

Каков механизм гидролиза этой соли?

Уравнение гидролиз солей серной кислоты

Так как ионы Н + соединяются в молекулы слабого электролита HNО2, их концентрация уменьшается и равновесие процесса диссоциации воды по принципу Ле-Шателье смещается вправо. В растворе увеличивается концентрация свободных гидроксид-ионов ОН — . Поэтому раствор соли KNO2 имеет щелочную реакцию (pН > 7).

Вывод: Соли, образованные сильным основанием и слабой кислотой, при растворении в воде показывают щелочную реакцию среды, pН > 7.

II. Соли, образованные слабым основанием и сильной кислотой, гидролизуются по катиону. Эти соли образованы катионом слабого основания и анионом сильной кислоты. Катион соли связывает гидроксид-ион ОН — воды, образуя слабый электролит (основание).

Пример: Составим молекулярное и ионное уравнения гидролиза йодида аммония NH4I.

Соль NH4I образована слабым однокислотным основанием NH4OH и сильной кислотой НI:Уравнение гидролиз солей серной кислоты

При растворении в воде соли NH4I катионы аммония NH4 + связываются с гидроксид-ионами ОН — воды, образуя слабый электролит – гидроксид аммония NH4OH. В растворе появляется избыток ионов водорода Н + . Среда раствора соли NH4I – кислая, рН — из молекулы воды и образует слабое основание, и анионом слабой кислоты, который связывает ионы Н + из молекулы воды и образует слабую кислоту. Реакция растворов этих солей может быть нейтральной, слабокислой или слабощелочной. Это зависит от констант диссоциации слабой кислоты и слабого основания, которые образуются в результате гидролиза.

Пример 1: Составим уравнения гидролиза ацетата аммония CH3COONH4. Эта соль образована слабой уксусной кислотой СН3СООН и слабым основанием NH4ОH:Уравнение гидролиз солей серной кислоты

Реакция раствора соли CH3COONH4 – нейтральная (рН=7), потому что Kд(СН3СООН)=Kд(NH4ОH).

Пример 2: Составим уравнения гидролиза цианида аммония NH4CN. Эта соль образована слабой кислотой HCN и слабым основанием NH4ОH:

Уравнение гидролиз солей серной кислоты

Уравнение гидролиз солей серной кислоты

Реакция раствора соли NH4CN — слабощелочная (pН > 7), потому что Kд(NH4ОH)> Kд(HCN).

Как уже было отмечено, для большинства солей гидролиз является обратимым процессом. В состоянии равновесия гидролизуется только небольшая часть соли. Однако некоторые соли полностью разлагаются водой, т. е. для них гидролиз является необратимым.

Необратимому (полному) гидролизу подвергаются соли, которые образованы слабым нерастворимым или летучим основанием и слабой летучей или нерастворимой кислотой. Такие соли не могут существовать в водных растворах, К ним, например, относятся:Уравнение гидролиз солей серной кислоты

Пример: Составим уравнение гидролиза сульфида алюминия Al2S3:

Гидролиз сульфида алюминия протекает практически полностью до образования гидроксида алюминия Al(OH)3 и сероводорода H2S.

Поэтому в результате обменных реакций между водными растворами некоторых солей не всегда образуются две новые соли. Одна из этих солей может подвергаться необратимому гидролизу с образованием соответствующего нерастворимого основания и слабой летучей (нераствориой) кислоты. Например:

Суммируя эти уравнения, получаем:

или в ионном виде:

IV. Соли, образованные сильной кислотой и сильным основанием, не гидролизуются, потому что катионы и анионы этих солей не связываются с ионами Н + или ОН — воды, т. е. не образуют с ними молекул слабых электролитов. Равновесие диссоциации воды не смещается. Среда растворов этих солей — нейтральная (рН = 7,0), так как концентрации ионов Н + и ОН — в их растворах равны, как в чистой воде.

Вывод: Соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются и показывают нейтральную реакцию среды (рН = 7,0).

Ступенчатый гидролиз

Гидролиз солей может протекать ступенчато. Рассмотрим случаи ступенчатого гидролиза.

Если соль образована слабой многоосновной кислотой и сильным основанием, число ступеней гидролиза зависит от основности слабой кислоты. В водном растворе таких солей на первых ступенях гидролиза образуются кислая соль вместо кислоты и сильное основание. Ступенчато гидролизуюгся соли Na2SO3, Rb23, K2SiO3, Li3PO4 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза карбоната калия K2СО3.

Гидролиз соли K2СО3 протекает по аниону, потому что соль карбонат калия образована слабой кислотой Н2СО3 и сильным основанием KОН:Уравнение гидролиз солей серной кислоты

Так как Н2СО3 – двухосновная кислота, гидролиз K2СО3 протекает по двум ступеням.

Уравнение гидролиз солей серной кислоты

Продуктами первой ступени гидролиза K2СО3 являются кислая соль KHCO3 и гидроксид калия KОН.

Вторая ступень (гидролиз кислой соли, которая образовалась в результате первой ступени):Уравнение гидролиз солей серной кислоты

Продуктами второй ступени гидролиза K2СО3 являются гидроксид калия и слабая угольная кислота Н2СО3. Гидролиз по второй ступени протекает в значительно меньшей степени, чем по первой ступени.

Среда раствора соли K2СО3 — щелочная (рН > 7), потому что в растворе увеличивается концентрация ионов ОН — .

Если соль образована слабым многокислотным основанием и сильной кислотой, то число ступеней гидролиза зависит от кислотности слабого основания. В водных растворах таких солей на первых ступенях образуется основная соль вместо основания и сильная кислота. Ступенчато гидролизуются соли MgSО4, CoI2, Al2(SO4)3, ZnBr2 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза хлорида никеля (II) NiCl2.

Гидролиз соли NiCl2 протекает по катиону, так как соль образована слабым основанием Ni(OH)2 и сильной кислотой НСl. Катион Ni 2+ связывает гидроксид-ионы ОН — воды. Ni(OH)2 — двухкислотное основание, поэтому гидролиз протекает по двум ступеням.

Уравнение гидролиз солей серной кислоты

Продуктами первой ступени гидролиза NiCl2 являются основная соль NiOHCl и сильная кислота HCl.

Вторая ступень (гидролиз основной соли, которая образовалась в результате первой ступени гидролиза):Уравнение гидролиз солей серной кислоты

Продуктами второй ступени гидролиза являются слабое основание гидроксид никеля (II) и сильная хлороводородная кислота НCl. Однако степень гидролиза по второй ступени намного меньше, чем по первой ступени.

Среда раствора NiCl2 — кислая, рН + .

Гидролизу подвергаются не только соли, но и другие неорганические соединения. Гидролизуются также жиры, углеводы, белки и другие вещества, свойства которых изучаются в курсе органической химии. Поэтому можно дать более общее определение процесса гидролиза:

Гидролиз — это реакция обменного разложения веществ водой.

Видео:Гидролиз солей. 9 класс.Скачать

Гидролиз солей. 9 класс.

Уравнение гидролиз солей серной кислоты

В ходе урока мы изучим тему «Гидролиз. Среда водных растворов. Водородный показатель». Вы узнаете о гидролизе – обменной реакции вещества с водой, приводящей к разложению химического вещества. Кроме того, будет введено определение водородному показателю – так называемому РН.

I. Механизм гидролиза

Гид­ро­лиз – это об­мен­ная ре­ак­ция ве­ще­ства с водой, при­во­дя­щая к его раз­ло­же­нию.

По­про­бу­ем разо­брать­ся в при­чине дан­но­го яв­ле­ния.

Элек­тро­ли­ты де­лят­ся на силь­ные элек­тро­ли­ты и сла­бые. См. Табл. 1.

СИЛЬ­НЫЕ ЭЛЕК­ТРО­ЛИ­ТЫ

СЛА­БЫЕ ЭЛЕК­ТРО­ЛИ­ТЫ

Сте­пень дис­со­ци­а­ции при 180С в рас­тво­рах с кон­цен­тра­ци­ей элек­тро­ли­та 0,1 моль/л близ­ка к 100%. Дис­со­ци­и­ру­ют прак­ти­че­ски необ­ра­ти­мо.

Сте­пень дис­со­ци­а­ции при 180С в рас­тво­рах с кон­цен­тра­ци­ей элек­тро­ли­та 0,1 моль/л зна­чи­тель­но мень­ше 100%. Дис­со­ци­и­а­ция необ­ра­ти­ма.

  • Ще­ло­чи
  • Соли
  • Неко­то­рые неор­га­ни­че­ские кис­ло­ты (НNO3, HClO4,HI, HCl, HBr, H2SO4)
  • Гид­рок­си­ды ме­тал­лов, кроме IA и IIA групп, рас­твор ам­ми­а­ка
  • Мно­гие неор­га­ни­че­ские кис­ло­ты (H2S, HCN, HClO, HNO2)
  • Ор­га­ни­че­ские кис­ло­ты (HCOOH, CH3COOH)
  • Вода

Вода от­но­сит­ся к сла­бым элек­тро­ли­там и по­это­му дис­со­ци­и­ру­ет на ионы лишь в незна­чи­тель­ной сте­пе­ни

Н2О ↔ Н + + ОН —

Ионы ве­ществ, по­па­да­ю­щие в рас­твор, гид­ра­ти­ру­ют­ся мо­ле­ку­ла­ми воды. Но при этом может про­ис­хо­дить и дру­гой про­цесс. На­при­мер, ани­о­ны соли, ко­то­рые об­ра­зу­ют­ся при её дис­со­ци­а­ции, могут вза­и­мо­дей­ство­вать с ка­ти­о­на­ми во­до­ро­да, ко­то­рые, пусть и в незна­чи­тель­ной сте­пе­ни, но все-та­ки об­ра­зу­ют­ся при дис­со­ци­а­ции воды. При этом может про­ис­хо­дить сме­ще­ние рав­но­ве­сия дис­со­ци­а­ции воды. Обо­зна­чим анион кис­ло­ты Х-.

Пред­по­ло­жим, что кис­ло­та силь­ная. Тогда она по опре­де­ле­нию прак­ти­че­ски пол­но­стью рас­па­да­ет­ся на ионы. Если кис­ло­та сла­бая, то она дис­со­ци­и­ру­ет непол­но­стью. Она будет об­ра­зо­вы­вать­ся при при­бав­ле­нии в воду из ани­о­нов соли и ионов во­до­ро­да, по­лу­ча­ю­щих­ся при дис­со­ци­а­ции воды. За счет её об­ра­зо­ва­ния, в рас­тво­ре будут свя­зы­вать­ся ионы во­до­ро­да, и их кон­цен­тра­ция будет умень­шать­ся. Н + + Х — ↔ НХ

Но, по пра­ви­лу Ле Ша­те­лье, при умень­ше­нии кон­цен­тра­ции ионов во­до­ро­да рав­но­ве­сие сме­ща­ет­ся в пер­вой ре­ак­ции в сто­ро­ну их об­ра­зо­ва­ния, т. е. впра­во. Ионы во­до­ро­да будут свя­зы­вать­ся с иона­ми во­до­ро­да воды, а гид­рок­сид ионы – нет, и их ста­нет боль­ше, чем было в воде до при­бав­ле­ния соли. Зна­чит, среда рас­тво­ра будет ще­лоч­ная. Ин­ди­ка­тор фе­нол­фта­ле­ин ста­нет ма­ли­но­вым.

Ана­ло­гич­но можно рас­смот­реть вза­и­мо­дей­ствие ка­ти­о­нов с водой. Не по­вто­ряя всю це­поч­ку рас­суж­де­ний, поды­то­жи­ва­ем, что если ос­но­ва­ние сла­бое, то в рас­тво­ре будут на­кап­ли­вать­ся ионы во­до­ро­да, и среда будет кис­лая.

II. Классификация катионов и анионов

К сильным кислотам относятся:

  • H2SO4 (серная кислота),
  • HClO4 (хлорная кислота),
  • HClO3 (хлорноватая кислота),
  • HNO3 (азотная кислота),
  • HCl (соляная кислота),
  • HBr (бромоводородная кислота),
  • HI (иодоводородная кислота).

Ниже приведен список слабых кислот:

  • H2SO3 (сернистая кислота),
  • H2CO3 (угольная кислота),
  • H2SiO3 (кремниевая кислота),
  • H3PO3 (фосфористая кислота),
  • H3PO4 (ортофосфорная кислота),
  • HClO2 (хлористая кислота),
  • HClO (хлорноватистая кислота),
  • HNO2 (азотистая кислота),
  • HF (фтороводородная кислота),
  • H2S (сероводородная кислота),
  • большинство органических кислот, напр., уксусная (CH3COOH).

​Слабые основания — это:

  • все нерастворимые в воде гидроксиды (напр., Fe(OH)3, Cu(OH)2 и т. д.),
  • NH4OH (гидроксид аммония).

III. Отношение к гидролизу солей разных типов

По­сколь­ку и ка­ти­о­ны и ани­о­ны, со­глас­но дан­ной клас­си­фи­ка­ции, бы­ва­ют двух типов, то всего су­ще­ству­ет 4 раз­но­об­раз­ных ком­би­на­ции при об­ра­зо­ва­нии их солей. Рас­смот­рим, как от­но­сит­ся к гид­ро­ли­зу каж­дый из клас­сов этих солей.

1. Гидролиз не возможен (гидролиз соли, образованной сильным основанием и сильной кислотой)

Соль, образованная сильным основанием и сильной кислотой (KBr, NaCl, NaNO3), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется.

рН таких растворов = 7. Реакция среды остается нейтральной.

2. Гидролиз по катиону (в реакцию с водой вступает только катион, т.е. это гидролиз соли, образованной слабым основанием и сильной кислотой)

В соли, образованной слабым основанием и сильной кислотой (FeCl2, NH4Cl, Al2(SO4)3,MgSO4) гидролизу подвергается катион:

FeCl2 + HOH Fe(OH)Cl + HCl
Fe 2+ + 2Cl — + H + + OH — FeOH + + 2Cl — + Н +

В результате гидролиза образуется слабый электролит, ион H + и другие ионы.

рН раствора Подведем итог тому, что вы узнали о гидролизе по катиону:

1) по катиону соли, как правило, гидролизуются обратимо;

2) химическое равновесие реакций сильно смеще­но влево;

3) реакция среды в растворах таких солей кислот­ная (рН Гидролиз по аниону (в реакцию с водой вступает только анион, т.е. это гидролиз соли, образованной сильным основанием и слабой кислотой)

Соль, образованная сильным основанием и слабой кислотой (КClO, K2SiO3, Na2CO3,CH3COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид-ион ОН — и другие ионы.

K2SiO3 + НОH KHSiO3 + KОН
2K + +SiO3 2- + Н + + ОH — НSiO3 — + 2K + + ОН —

рН таких растворов > 7 (раствор приобретает щелочную реакцию).

Подведем итог тому, что вы узнали о гидролизе по аниону:

1) по аниону соли, как правило, гидролизуются обратимо;

2) химическое равновесие в таких реакциях силь­но смещено влево;

3) реакция среды в растворах подобных солей ще­лочная (рН > 7);

4) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кис­лые соли.

4. Совместный гидролиз: и по катиону, и по аниону (в реакцию с водой вступает и катион и анион, т.е. это гидролиз соли, образованной слабым основанием и слабой кислотой)

Соль, образованная слабым основанием и слабой кислотой (СН3СООNН4, (NН4)2СО3,Al2S3), гидролизуется и по катиону, и по аниону. В результате образуются малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания. Мерой силы кислоты и основания является константа диссоциации соответствующего реактива.

Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Уравнение гидролиз солей серной кислотыГидролиз — процесс обратимый.

Гидролиз протекает необратимо, если в результате реакции образуется нерастворимое основание и (или) летучая кислота

Видео — Эксперимент: «Гидролиз солей»

IV. Алгоритм составления уравнений гидролиза солей

Ход рассуждений

Пример

1. Определяем силу электролита – основания и кислоты, которыми образована рассматриваемая соль.

Помните!

Гидролиз всегда протекает по слабому электролиту, сильный электролит находится в растворе в виде ионов, которые не связываются водой.

Кислота

Основания

Слабые – все нерастворимые в воде основания и NH4OH

Na2CO3 – карбонат натрия, соль образованная сильным основанием (NaOH) и слабой кислотой (H2CO3)

2. Записываем диссоциацию соли в водном растворе, определяем ион слабого электролита, входящий в состав соли

2Na + + CO3 2- + H + OH — ↔

Это гидролиз по аниону

От слабого электролита в соли присутствует анион CO3 2- , он будет связываться молекулами воды в слабый электролит – происходит гидролиз по аниону.

3. Записываем полное ионное уравнение гидролиза – ион слабого электролита связывается молекулами воды

2Na + + CO3 2- + H + OH — ↔ (HCO3) — + 2Na + + OH —

В продуктах реакции присутствуют ионы ОН — , следовательно, среда щелочная pH>7

4. Записываем молекулярное гидролиза

V. Практическое применение гидролиза

На практике с гидролизом учителю приходится сталкиваться, например при приготовлении растворов гидролизующихся солей (ацетат свинца, например). Обычная “методика”: в колбу наливается вода, засыпается соль, взбалтывается. Остается белый осадок. Добавляем еще воды, взбалтываем, осадок не исчезает. Добавляем из чайника горячей воды – осадка кажется еще больше… А причина в том, что одновременно с растворением идет гидролиз соли, и белый осадок, который мы видим это уже продукты гидролиза – малорастворимые основные соли. Все наши дальнейшие действия, разбавление, нагревание, только усиливают степень гидролиза. Как же подавить гидролиз? Не нагревать, не готовить слишком разбавленных растворов, и поскольку главным образом мешает гидролиз по катиону – добавить кислоты. Лучше соответствующей, то есть уксусной.

В других случаях степень гидролиза желательно увеличить, и чтобы сделать щелочной моющий раствор бельевой соды более активным, мы его нагреваем – степень гидролиза карбоната натрия при этом возрастает.

Важную роль играет гидролиз в процессе обезжелезивания воды методом аэрации. При насыщении воды кислородом, содержащийся в ней гидрокарбонат железа(II) окисляется до соли железа(III), значительно сильнее подвергающегося гидролизу. В результате происходит полный гидролиз и железо отделяется в виде осадка гидроксида железа(III).

На этом же основано применение солей алюминия в качестве коагулянтов в процессах очистки воды. Добавляемые в воду соли алюминия в присутствии гидрокарбонат-ионов полностью гидролизуются и объемистый гидроксид алюминия коагулирует, увлекая с собой в осадок различные примеси.

VI. Задания для закрепления

Задание №1. Запишите уравнения гидролиза солей и определите среду водных растворов (рН) и тип гидролиза:
Na2SiO3 , AlCl3, K2S.

Задание №2. Составьте уравнения гидролиза солей, определите тип гидролиза и среду раствора:
Сульфита калия, хлорида натрия, бромида железа (III)

Задание №3. Составьте уравнения гидролиза, определите тип гидролиза и среду водного раствора соли для следующих веществ:
сульфид калия — K2S, бромид алюминия — AlBr3, хлорид лития – LiCl, фосфат натрия — Na3PO4, сульфат калия — K2SO4, хлорид цинка — ZnCl2, сульфит натрия — Na2SO3, сульфат аммония — (NH4)2SO4, бромид бария — BaBr2

Видео:Гидролиз солей. 1 часть. 11 класс.Скачать

Гидролиз солей. 1 часть. 11 класс.

Гидролиз

Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Уравнение гидролиз солей серной кислоты

Гидролиз солей может протекать:

обратимо : только небольшая часть частиц исходного вещества гидролизуется.

необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Видео:Химия 9 класс (Урок№8 - Гидролиз солей.)Скачать

Химия 9 класс (Урок№8 - Гидролиз солей.)

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

или в молекулярной форме:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

Уравнение гидролиз солей серной кислоты

Видео:Гидролиз солей. Теория для задания 23 ЕГЭ по химии.Скачать

Гидролиз солей. Теория для задания 23 ЕГЭ по химии.

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

КислотаГалогенангидриды
H2SO4SO2Cl2
H2SO3SOCl2
H2CO3COCl2
H3PO4POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

Уравнение гидролиз солей серной кислоты

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

Уравнение гидролиз солей серной кислоты

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

📺 Видео

Гидролиз солей. Классификация солей. Решение примеров.Скачать

Гидролиз солей. Классификация солей. Решение примеров.

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и Металлами

Серная кислота и ее соли. 9 класс.Скачать

Серная кислота и ее соли. 9 класс.

Гидролиз солей. 2 часть. 11 класс.Скачать

Гидролиз солей. 2 часть. 11 класс.

11 класс. Гидролиз солей.Скачать

11 класс. Гидролиз солей.

Химия 9 класс (Урок№13 - Оксид серы (VI). Серная кислота и ее соли.)Скачать

Химия 9 класс (Урок№13 - Оксид серы (VI). Серная кислота и ее соли.)

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭСкачать

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭ

Гидролиз солей, образованных слабым основанием и сильной кислотойСкачать

Гидролиз солей, образованных слабым основанием и сильной кислотой

Химия 8 класс: Гидролиз солейСкачать

Химия 8 класс: Гидролиз солей

Гидролиз солейСкачать

Гидролиз солей

Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIV

Гидролиз солей. 10 класс.Скачать

Гидролиз солей. 10 класс.

Гидролиз солейСкачать

Гидролиз солей
Поделиться или сохранить к себе: