Уравнение гейлюсака для идеального газа

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Уравнение гейлюсака для идеального газа

Произведение числа Авогадро Уравнение гейлюсака для идеального газана постоянную Больцмана k называют универсальной газовой постоянной (R): R=Уравнение гейлюсака для идеального газаk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Уравнение гейлюсака для идеального газаk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Уравнение гейлюсака для идеального газа

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Уравнение гейлюсака для идеального газа) в состояние (Уравнение гейлюсака для идеального газа) (рис. 30.1).

Уравнение гейлюсака для идеального газа

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Уравнение гейлюсака для идеального газаРазделив обе части первого уравнения на Уравнение гейлюсака для идеального газа, а второго — на Уравнение гейлюсака для идеального газа, получим: Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газа. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Уравнение гейлюсака для идеального газа

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Уравнение гейлюсака для идеального газа) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Уравнение гейлюсака для идеального газа

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Уравнение гейлюсака для идеального газа) в состояние (Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газаT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pУравнение гейлюсака для идеального газа. После сокращения на T получим: Уравнение гейлюсака для идеального газа.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Уравнение гейлюсака для идеального газа

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Уравнение гейлюсака для идеального газа. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газа

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Уравнение гейлюсака для идеального газа) в состояние (Уравнение гейлюсака для идеального газа), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Уравнение гейлюсака для идеального газа. После сокращения на p получим: Уравнение гейлюсака для идеального газа

Уравнение гейлюсака для идеального газа

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pУравнение гейлюсака для идеального газа

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Уравнение гейлюсака для идеального газа

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газа

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Уравнение гейлюсака для идеального газа) в состояние (Уравнение гейлюсака для идеального газа), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Уравнение гейлюсака для идеального газа. После сокращения на V получим: Уравнение гейлюсака для идеального газа

Уравнение гейлюсака для идеального газа

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Уравнение гейлюсака для идеального газа

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Уравнение гейлюсака для идеального газа

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газа

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Уравнение гейлюсака для идеального газа

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Уравнение гейлюсака для идеального газа, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Уравнение гейлюсака для идеального газа

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Уравнение гейлюсака для идеального газа Уравнение гейлюсака для идеального газаРазделив уравнение (2) на уравнение (1) и учитывая, что Уравнение гейлюсака для идеального газаполучим: Уравнение гейлюсака для идеального газагде Уравнение гейлюсака для идеального газаУравнение гейлюсака для идеального газаНайдем значение искомой величины: Уравнение гейлюсака для идеального газа

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Уравнение гейлюсака для идеального газа

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Уравнение гейлюсака для идеального газа

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Уравнение гейлюсака для идеального газа— универсальная газовая постоянная.
  3. Уравнение Клапейрона: Уравнение гейлюсака для идеального газа
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Уравнение гейлюсака для идеального газа

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Закон Гей-Люссака. Изобара

Открытие газового закона Р. Бойлем и Э. Мариоттом для изотермических процес­сов побудило ученых искать другие функ­циональные зависимости макропараметров газов. В 1802 году французский ученый Ж. Л. Гей-Люссак, исследуя зависимость объе­ма газа от температуры при постоянном давлении, установил закон, названный со временем в его честь.

За­кон Гей-Люссака Для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется.

Эту зависимость математически записывают так:

[ frac = const qquad text quad begin m=const \ p=const end ]

Данный закон приближенно можно наблюдать, когда происходит расширение газа при его нагревании в цилиндре с подвижным поршнем. Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня.

Другим проявлением закона Гей-Люссака в действии является аэростат. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно велика.

Обобщив экспериментальные данные, Гей-Люссак установил, что с изменением температуры при постоянном давлении относительный объем данной массы газа изменяется линейно.

На основании наблюдений он сформулировал утверждение, названное в его честь законом Гей-Люссака.

Закон Гей-Люссака При постоянном давлении относительное изменение объема газа данной массы прямо пропорционально изменению температуры:

где:
Δt — изменение температуры;
V — объем газа при определенной температуре t.

После некоторых математических преобразований, закон Гей-Люссака можно записать также в виде:

[ V=V_0left( 1+alpha Delta t right) ]

где:
V0 — объем газа при температуре t0 .

Коэффициент пропорциональности α называется температурным коэффициентом объемного расширения. Расчета показали, что все разреженные газы при нагревании на 1°C или 1 K изменяют свой объем приблизительно на ( frac ) частицу от начального объема:

Гей-Люссак доказал, что у всех газов температурный коэффициент объемного расширения одинаковый и равен 1 / 273 K -1 .

Термодинамический процесс, который происходит при постоянном давлении, называется изобарным, а линии, изображающие его, — изобарами. На координатной плоскости зависимости объема V от температуры t изобары будут иметь вид прямых, которые сходятся в одной точке. Их наклон зависит от значения давления — изобара, которая отвечает большему давлению, проходит ниже изобары меньшего давления (p1 .

Закон Гей-Люссака приобретет более простую форму, если его выразить через абсолютную температуру. Поскольку 1 + αt = 1 + (1 / 273) • (T — 273) = αТ , то

Таким образом, при постоянном давлении объем данной массы газа прямо пропорциональный абсолютной температуре.

Закон Гей-Люссака утверждает, что в изобарном процессе отношение объемов данной массы газа в разных состояниях равно отношению абсолютных температур газа в этих состояниях:

Очевидно, что на координатных плоскостях pT и pV изобарами являются прямые, перпендикулярные оси давления.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Изопроцессы в газах. Закон Гей-Люссака.

При постоянном давлении р объем V идеального газа меняется линейно с температурой.

Уравнение гейлюсака для идеального газа

где V0 — начальный объем, t — разность начальной и конечной температур. Коэффициент тепло­вого расширения идеальных газов α = (1/273,15)К -1 одинаков для всех газов.

Процесс изменения состояния термодинамической системы при постоянном давлении называется изобарным (от греч. baros — вес, тяжесть).

Закон открыт французским ученым Ж. Гей-Люссаком в 1802 г. и независимо от него Дж. Даль­тоном в 1801 г.

Закон Гей-Люссака, как и другие газовые законы, является следствием уравнения состояния идеального газа. Это становится очевидным, если в Уравнение гейлюсака для идеального газазаменить t на абсолютную температуру Т= t + 273,15, а коэффициент расширения α — его численным значением 1/273,15:

Уравнение гейлюсака для идеального газа,

Уравнение гейлюсака для идеального газа

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется.

Согласно Уравнение гейлюсака для идеального газа, объем газа линейно зависит от температуры при постоянном давлении:

Эта зависимость графически изображается прямой, которая назы­вается изобарой.

Уравнение гейлюсака для идеального газа

Различным давлениям соответствуют разные изобары. С ростом давления объем газа при постоянной температуре, согласно закону Бойля—Мариотта, уменьшается, поэтому изобара, соответствующая более высокому давлению р2, лежит ниже изобары, соответствующей более низкому давлению р1.

В области низких температур все изобары идеального газа схо­дятся в точке Т = 0, но это не означает, что объем реального газа действительно обращается в нуль. При низких температурах все газы обращаются в жидкости, а к жидкостям уравнение состояния не применимо.

📺 Видео

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок

Физика - Газовые законы. Уравнение идеального газа.Скачать

Физика - Газовые законы. Уравнение идеального газа.

ЛР-10-2-02 Проверка закона Гей-ЛюссакаСкачать

ЛР-10-2-02 Проверка закона Гей-Люссака

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Законы идеального газа. Видеоурок 29. Физика 10 классСкачать

Законы идеального газа. Видеоурок 29. Физика 10 класс

10 класс, 4 урок, Уравнение состояния идеального газаСкачать

10 класс, 4 урок, Уравнение состояния идеального газа

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Основы молекулярной физики | закон Гей - ЛюссакаСкачать

Основы молекулярной физики | закон Гей - Люссака

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

ЧК_МИФ ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАКОНЫ ИДЕАЛЬНОГО ГАЗАСкачать

ЧК_МИФ   ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАКОНЫ ИДЕАЛЬНОГО ГАЗА
Поделиться или сохранить к себе: