Уравнение геометрического места точек равноудаленных от двух данных точек

Уравнение геометрического места точек равноудаленных от двух данных точек

Найти геометрическое место точек, равноудаленных от двух данных точек.

Возьмем прямоугольную систему координат, и пусть две данные точки B и C лежат на оси абсцисс и имеют координаты (x1, 0) и (x2, 0) (см. рисунок). Пусть точка A принадлежит искомому геометрическому месту. Обозначим ее координаты через x и y: A(x, y).

Уравнение геометрического места точек равноудаленных от двух данных точек

На основании формулы для определения расстояния между двумя точками Уравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точек, значит, так как по условию AB = AC, можем написать, что Уравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точек. Это и есть уравнение искомого геометрического места.

Возводя в квадрат обе части искомого равенства, будем иметь

После очевидных упрощений получим 2x(x2x1) = (x2x1)(x2 + x1); сокращая на Уравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точек, имеем 2x = x1 + x2, или Уравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точек.

Это уравнение прямой, перпендикулярной оси Ox и проходящей через середину отрезка BC.

Итак, искомым геометрическим местом является прямая, перпендикулярная к отрезку BC, соединяющему данные точки, и проходящая через его середину.

Замечание. При решении задачи нам пришлось уничтожить радикалы в уравнении искомого геометрического места

Уравнение геометрического места точек равноудаленных от двух данных точекУравнение геометрического места точек равноудаленных от двух данных точек Уравнение геометрического места точек равноудаленных от двух данных точек(1)

в результате чего было получено уравнение

Уравнение геометрического места точек равноудаленных от двух данных точек Уравнение геометрического места точек равноудаленных от двух данных точек(2)

Видео:ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ ТРЕХ ДАННЫХ ТОЧЕК. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 классСкачать

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ ТРЕХ ДАННЫХ ТОЧЕК. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 класс

Please wait.

Видео:Найти точку на прямой, равноудалённую от двух данных точекСкачать

Найти точку на прямой, равноудалённую от двух данных точек

We are checking your browser. mathvox.ru

Видео:ГМТ // ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕКСкачать

ГМТ // ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 7009fc4a6e7b9d40 • Your IP : 178.45.155.83 • Performance & security by Cloudflare

Видео:найти уравнение геометрического места точекСкачать

найти уравнение геометрического места точек

Уравнение геометрического места точек плоскости,равноудаленных от двух прямых y=-4x+12 и y=-4x+20 имеет вид

Уравнение геометрического места точек равноудаленных от двух данных точек

Прямые y = -4x + 12 и y = -4x + 20 параллельны, т.к. их угловые коэффициенты равны.
Значит, точки, равноудаленные от этих прямых, лежат на прямой, параллельной данным.
Т.е. её уравнение будет выглядеть так: y = -4x + b.

Найдем точки пересечения функций с осью Ox: y = 0
для y = -4x + 12: x = 3
для y = -4x + 20: x = 5
Получаем (3; 0) и (5; 0).
Точка, которая лежит ровно между ними: (4; 0).
Точка (4; 0) принадлежит прямой y = -4x + b, значит, мы можем подставить её координаты в уравнение.
0 = -4*4 + b
b = 16

Таким образом, y = -4x + 16.

Уравнение геометрического места точек равноудаленных от двух данных точек

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

🎬 Видео

№281. Что представляет собой множество всех точек плоскости, равноудаленных от двух данныхСкачать

№281. Что представляет собой множество всех точек плоскости, равноудаленных от двух данных

ГМТ РАВНОУДАЛЕННЫХ ОТ СТОРОН ДАННОГО УГЛА И ОТ ДВУХ ТОЧЕК. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 классСкачать

ГМТ РАВНОУДАЛЕННЫХ ОТ СТОРОН ДАННОГО УГЛА И ОТ ДВУХ ТОЧЕК. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 класс

Геометрическое место точек окружность и круг - 7 класс геометрияСкачать

Геометрическое место точек окружность и круг - 7 класс геометрия

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ СТОРОН УГЛА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 классСкачать

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ СТОРОН УГЛА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 класс

PRO геометрические места точекСкачать

PRO геометрические места точек

ГМТ РАВНОУДАЛЕННЫХ ОТ ДВУХ ПАР ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 классСкачать

ГМТ РАВНОУДАЛЕННЫХ ОТ ДВУХ ПАР ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. Задачи. Метод ГМТ. ГЕОМЕТРИЯ 7 класс

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ КОНЦОВ ОТРЕЗКА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 классСкачать

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ КОНЦОВ ОТРЕЗКА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 класс

Составить уравнение прямой, проходящей через две данные точки. Метод координат. Геометрия 9 классСкачать

Составить уравнение прямой, проходящей через две данные точки. Метод координат. Геометрия 9 класс

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Геометрическое место точек (ГМТ).ОКРУЖНОСТЬ и КРУГ §19 геометрия 7 классСкачать

Геометрическое место точек (ГМТ).ОКРУЖНОСТЬ и КРУГ §19 геометрия 7 класс

Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.

Видеоурок "Уравнение прямой, проходящей через две точки"Скачать

Видеоурок "Уравнение прямой, проходящей через две точки"
Поделиться или сохранить к себе: