В 1807 году французский ученый Фурье доказал экспериментально, что во всякой точке тела (вещества) в процессе теплопроводности присуща однозначная взаимосвязь между тепловым потоком и градиентом температуры:
,
где Q – тепловой поток, выражается в Вт;
grad(T) – градиент температурного поля (совокупности числовых значений температуры в разнообразных местах системы в выбранный момент времени), единицы измерения К/м;
S – площадь поверхности теплообмена, м 2 ;
Градиент температуры получится характеризовать в виде векторной суммы составляющих по осям декартовых координат:
,
где i, j, k – ортогональные между собой единичные векторы, нацеленные по координатным осям.
Значит, данный закон устанавливает величину теплового потока при переносе тепла посредством теплопроводности.
Закон Фурье для поверхностной плотности теплового потока принимает вид:
.
Знак « минус» обозначает, что векторы теплового потока и градиента температуры разнонаправленные. Следует понимать, что теплота передается в направлении спада температуры.
И все же не лишним будет указать, что закон Фурье не принимает в расчет инерционность процесса теплопроводности, иначе говоря, в представленной модели колебание температуры в любой точке мгновенно распространяется на всё тело. Закон Фурье некорректно применять для характеристики высокочастотных процессов таких как, к примеру, распространение ультразвука, ударной волны.
Видео:Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать
Вопрос 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности.
Теплопроводность — процесс передачи теплоты путем непосредственного соприкосновения тел, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим.
Тепловой поток , .
Закон Фурье: тепловой поток пропорционален градиенту температуры и площади, то есть .
Плотность теплового потока , .
Коэффициент теплопроводности — количество теплоты, которое проходит в единицу времени через единицу поверхности через единичную толщину стенки при перепаде температуры в один градус, .
_____________________________________________________________________
Вопрос 32. Дифференциальное уравнение теплопроводности. Условия однозначности.
Условности:
1. Теплофизические свойства системы: , , .
2. Микрочастицы тела неподвижны.
3. Внутренние источники теплоты распределены в теле равномерно.
, где – коэффициент температуропроводности, характеризующий скорость изменения температуры в любой точке тела, [ ]
– теплоемкость тела; – плотность тела; – объемная плотность тепловыделения, [вm/м 3 ]; – температура; – оператор Лапласа.
(для полярных координат , , ),
Условия однозначности – математическое описание частных особенностей рассматриваемого процесса.
Решая уравнение , получим общее решение, которое в совокупности с условиями однозначности даст нам частные решения.
Условия однозначности:
1. Геометрические условия (характеризуют форму, размеры и положение тела в пространстве):
a. Форма тела (плоское, цилиндрическое сферическое тело)
b. Ограниченное тело.
c. Неограниченное тело.
2. Физические условия (определяют физические свойства тела и среды)
a. Характер изменения физических параметров:
i. Характер изменения .
ii. Характер изменения .
iii. Характер изменения .
iv. Характер изменения .
3. Временные условия (дают представление о распределении температуры в исследуемом теле в начальный момент времени):
a. :
i. .
ii. .
b. .
4. Граничные условия (определяют особенности взаимодействия на границе изучаемого тела с окружающими телами (средой)):
a. Граничные условия первого рода – закон изменения температуры на границе тела:
i. .
ii. .
b. Граничные условия второго рода – закон изменения температурного потока в стенке тела:
i. .
ii. .
c. Граничные условия третьего рода:
i. Закон изменения температуры окружающей среды.
ii. Закон, по которому идёт теплообмен тела с окружающей средой, .
d. Граничные условия четвёртого рода, .
________________________________________________________
Билет 33. Теплопроводность через однослойные и многослойные плоские стенки.
Теплопроводность – процесс передачи теплоты соприкасающимися, беспорядочно движущимися структурными частицами вещества
В основу теории теплопроводности положен закон Фурье – тепловой поток прямо пропорционален температурному градиенту и площади поверхности тела. Закон Фурье для плоской однослойной стенки
Плотность теплового потока – отношение теплового потока к площади поверхности теплопроводности. Для плоской стенки:
, где .
Коэффициент теплопроводности λ характеризует способность тел проводить теплоту.
Плотность теплового потока для стенки, состоящей из n слоёв:
,
где R – термическое сопротивление многослойной стенки
Многослойную стенку можно заменить эквивалентной однослойной, толщина которой равна толщине многослойной стенки
Тогда плотность теплового потока , где
_____________________________________________________________________
Вопрос 34. Теплопроводность через однослойные и многослойные цилиндрические стенки
Тепловой поток для цилиндрической однослойной стенки:
где Fm — расчётная поверхность теплопроводности,
где.
δ – толщина стенки, δ=r2 – r1
F1, F2 – площади внутренней и наружной поверхностей трубы, [м 2 ]
ψ – коэффициент, характеризующий отношение средней логарифмической FmL к средней геометрической
Линейная плотность теплового потока (тепловой поток, отнесённый к единице длины трубы) однослойной стенки определяется по формуле:
Тепловой поток для многослойной цилиндрической стенки:
Где
Fm – расчётная поверхность теплопроводности стенки;
λэ – эквивалентный коэффициент теплопроводности многослойной стенки
Линейная плотность теплового потока для многослойной стенки трубы
_____________________________________________________________________
Вопрос 35. Теплоотдача. Уравнение Ньютона. Коэффициент теплоотдачи.
Теплоотдача — конвективный теплообмен между жидкостью и поверхностью твёрдого тела (совместный перенос теплоты конвекцией и теплопроводностью).
Теплоотдачу рассчитывают по формуле Ньютона-Рихмана:
и плотность теплового потока
Коэффициент теплоотдачи зависит от: природы возникновения движения жидкости у поверхности теплообмена, режима движения жидкости, физических свойств жидкости, формы, размеров, положения в пространстве и состояния поверхности теплообмена.
____________________________________________________________________
Вопрос 36. Критериальные уравнения, физический смысл критериев подобия.Числа подобия, составленные только из заданных величин математического описания задачи, называются определяющими критериями подобия. Критерии подобия, содержащие альфа, называются определяемыми.
Число Нуссельта, или критерий теплоотдачи, характеризует соотношение тепловых потоков, передаваемых конвекцией и теплопроводностью по нормали через пристенный слой.
, где
— коэффициент теплоотдачи, [Вт/м^2*С]
l – определяющий линейный размер, [м]
— коэффициент теплопроводности жидкости, [Вт/м**С]
Число Рейнольдса – критерий гидродинамического подобия, характеризуется соотношением сил инерции и молекулярного трения (вязкости)
, где
w – средняя (линейная) скорость жидкости, определяется отношением объемного расхода к площади поперечного сечения потока, [м/с],
— кинематическая вязкость жидкости, [м^2/с]
По числовому значению Re судят о режиме течения жидкости:
Re =10^4 – развитый турбулентный
2320 2 К 4 ], ε – степень черноты наружной поверхности опытной трубы, F – площадь наружной поверхности опытной трубы.
Тепловой поток, передаваемый от опытной трубы в окружающую среду путем конвекции, равен
а опытное значение коэффициента теплоотдачи составляет
Определив при средней температуре пограничного слоя tm теплофизические свойства сухого воздуха λ; ν; β; Pr (находятся значения числа Грасгофа)
и комплекса (GrPr).
В зависимости от значения комплекса (GrPr) подбирается коэффициент C и показатель степени n в уравнении подобия конвективного теплообмена и определяются число Нуссельта
и расчетное значение коэффициента теплоотдачи
_____________________________________________________________________
Вопрос 38. Последовательность расчетов конвективного теплообмена в условиях вынужденной конвекции.
Рассчитаем конвективный теплообмен на примере лабораторной работы
Дано: напряжение U [В]
Динамический напор жидкости ΔH [кГ/м 2 ]
Температура стенки трубы t1 [°С] (10 измерений)
Температура жидкости на входе в трубу t11 [°C]
Температура жидкости на выходе из трубы t12 [°С]
Рассчитаем коэффициент теплоотдачи
Обработка опытных данных начинается с определения средней темпе-ратуры поверхности стенки трубы tс:
Средняя температура потока воды в трубе:
При средней температуре потока по таблице определяются теплофизические свойства воды: ρ; сp; λ; v.
Число Прандтля при средней температуре потока (10):
Скорость движения воды в трубе:
При движении жидкость нагревается на:
Количество теплоты в единицу времени, которое получает поток жид-кости от горячей поверхности стенки трубы:
Плотность теплового потока от стенки трубы к потоку жидкости:
Опытное значение среднего коэффициента теплоотдачи:
Число Рейнольдса (8) для потока жидкости в трубе:
В зависимости от полученного значения определяется выражение для поиска числу Нуссельта.
Теоретическое значение среднего коэффициента теплоотдачи вычисляется из определения критерия Нуссельта
_____________________________________________________________________
Видео:Метод Фурье для неоднородного уравнения теплопроводностиСкачать
Физический смысл коэффициента теплопроводности. Уравнение Фурье
Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности — закону Фурье — вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален вектору градиента температуры:
,где — коэффициент теплопроводности, Вт/(м×К). Он характеризует способность вещества, из которого состоит рассматриваемое тело, проводить теплоту.
Знак «-» указывает на противоположное направление вектора теплового потока и вектора градиента температуры. Вектор плотности теплового потока q всегда направлен в сторону наибольшего уменьшения температуры.
скалярная величина вектора плотности теплового потока:
,
Из формулы следует, что коэффициент теплопроводности определяет плотность теплового потока при градиенте температуры 1 К/м.
коэффициент теплопроводности является физическим параметром и зависит от химической природы вещества и его физического состояния (плотности, влажности, давления, температуры). Диапазоны изменения для различных материалов приведены на рисунке 9.2.
🔥 Видео
8.1 Решение уравнения теплопроводности на отрезкеСкачать
ЗАЧЕМ в жизни нужно преобразование Фурье? В Первом Приближении. Чуть-Чуть о Науке #НаукаСкачать
Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать
Уравнение в частных производных Уравнение теплопроводностиСкачать
Принцип максимума для уравнения теплопроводности на отрезкеСкачать
ТеплопроводностьСкачать
Метод Фурье для уравнения теплопроводности (диффузии)Скачать
Уравнения математической физики. Уравнение теплопроводности (диффузии).Скачать
Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать
AGalilov: Преобразование Фурье "на пальцах"Скачать
6-1. Уравнение теплопроводностиСкачать
Уравнения математической физики 11 Формула Пуассона для уравнения теплопроводностиСкачать
12.1 Как остывает кирпич (уравнение теплопроводности)Скачать
Решение задачи Коши для уравнения теплопроводности (Часть 1)Скачать
12. Как остывает шар (решение уравнения теплопроводности)Скачать
Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводностиСкачать
Уравнения математической физики. Решение гиперболического уравнения методом Фурье.Скачать
15. Решение уравнения теплопроводности в кругеСкачать