Уравнение фрейндлиха в линейной форме

Уравнение изотермы адсорбции Фрейндлиха

Уравнение Фрейндлиха для адсорбции газа имеет вид:

Уравнение фрейндлиха в линейной форме(11)

K и 1/n –постоянные уравнения Фрейндлиха.

Чаще всего это уравнение применяется в логарифмической форме:

Уравнение фрейндлиха в линейной форме(12)

Уравнение в такой форме позволяет построить линейную зависимость lnA от lnp и графически определить оба постоянных параметра.

Логарифмическое уравнение Фрейндлиха для адсорбции из раствора имеет вид:

Уравнение фрейндлиха в линейной форме(13)

Графически определяем постоянные параметры по линейной зависимости lnA от lnC.(рис.2)

Отрезок, отсекаемый на оси ординат равен lg k, а тангенс угла наклона прямой

Уравнение фрейндлиха в линейной форме

Рис.2. Изотерма адсорбции в координатах логарифмического уравнения.

Уравнение Никольского.

При ионообменной адсорбции происходит стехиометрический обратимый обмен ионов между объемом раствора электролитов и адсорбентом.

Процессы ионного обмена на твердой поверхности характеризуются уравнением Б.П.Никольского:

Уравнение фрейндлиха в линейной форме(14)

где Уравнение фрейндлиха в линейной формеи Уравнение фрейндлиха в линейной форме— количество ионов, поглощенных поверхностью сорбента (кмоль/кг), Уравнение фрейндлиха в линейной формеи Уравнение фрейндлиха в линейной форме— равновесные концентрации ионов в растворе (кмоль/ Уравнение фрейндлиха в линейной форме), К – константа обмена, зависящая от способности ионов к адсорбции на данном сорбенте.

Графически уравнение Б.П.Никольского изображается прямой, тангенс угла наклона которой и представляют величину константы К.

Примеры решения задач:

1. Рассчитать удельную поверхность адсорбента по изотерме адсорбции бензола на его поверхности. Площадь, занимаемая молекулой бензола, S0=49·10 -20 м 2 .

p P/PS0.0240.080.140.200.270.350.46
a·10 3 , моль/кг14,934,847,256,866,379.3101.0

Решение. Проверяют применимость к экспериментальным данным теории БЭТ. С этой целью рассчитывают абсциссу и ординату уравнения изотермы адсорбции БЭТ в линейной форме, т.е.

Уравнение фрейндлиха в линейной формеи Уравнение фрейндлиха в линейной форме

Результаты вычислений сводят в таблицу 1 и строят график зависимости y=f(x)

p/psy, кг/мольp/psy, кг/моль
0,0241,6500,275,466
0,082,4990,356,790
0,143,4490,468,343

Уравнение фрейндлиха в линейной форме

Рис.1 изотерма адсорбции в координатах линейной формы уравнения БЭТ.

Для определения адсорбционной емкости монослоя аm по графику зависимости у=f(x) находят константы уравнения прямой линии: отрезок, отсекаемый на оси ординат при p/ps=0, b0=1.24 кг/моль, и угловой коэффициент прямой b1=15.8 кг/моль. Для сравнения вычисляют b0 и b1

методом наименьших квадратов. Данные для расчёта b0 и b1 приведены в таблице 2.

nxy, кг/мольxy, кг/мольx 2
0,0241,6500,03965,76·10 -4
0,0802,4990,20006,4·10 -3
0,1403,4990,48301,96·10 -2
0,2004,4000,88004,00·10 -2
0,2705,4661,45507,08·10 -2
0,3506,7902,37650,123
0,4608,4343,87780,212

k=13,65 и am=0,0489 моль/кг.

По величине аm рассчитывают удельную поверхность адсорбента:

2. Вычислить предельный адсорбционный объём активированного угля БАУ по изотерме адсорбции бензола (таблица 3). Молярный объём бензола vm=89·10 -6 м 3 /моль.

p/psa, моль/кгp/psa, моль/кгp/psa, моль/кг
1,33·10 -60,501,63·10 -22,250,3272,86
2,13·10 -50,853,77·10 -22,390,4603,00
1,21·10 -41,189,47·10 -22,560,6573,19
5,60·10 -41,550,2012,740,8474,47

Решение. Проверяют применимость уравнения (II.15) к экспериментальным данным. С этой целью вычисляют lg a и Уравнение фрейндлиха в линейной форме(таблица 4) и строят график зависимости Уравнение фрейндлиха в линейной форме(Рис. II.2)

Уравнение фрейндлиха в линейной формеlg a Уравнение фрейндлиха в линейной формеlg a Уравнение фрейндлиха в линейной формеlg a
34,52-0,30103,190,35220,2300,4564
21,82-0,07062,030,37840,1130,4771
15,340,07191,050,40820,0330,5038
10,580,19030,480,43780,0050,6503

Уравнение фрейндлиха в линейной форме

Рис.2 Изотерма адсорбции в координатах линейной формы уравнения М.М.Дубинина.

Как видно из рис.2, экспериментальные точки с хорошим приближением укладываются на прямую линию и, следовательно, уравнение (15) применимо к адсорбции бензола на активированном угле БАУ.

По отрезку, отсекаемому па оси lg a при Уравнение фрейндлиха в линейной форме=0, находят Уравнение фрейндлиха в линейной форме=0,435 и

3. По экспериментальным данным сорбции паров воды на активированном угле при Т = 293 К построить кривую капиллярной конденсации. Показать наличие гистерезиса и, используя ветвь десорбции, построить интегральную и дифференциальную кривые распределения пор по радиусам.

аадс ·10 3 ,моль/кг. 3,75 5,3 6;2 8,75 10,4 12, 5 13 ,4

адес·10 3 , моль/кг . . .. 3,75 7,0 7,9 10,0 11,5 13,0 13,4

Vm=18·10 -3 м3/моль, σ= 72,5-10 -3 Дж/м 2 .’

Решение. Строят изотерму капиллярной конденсации в соответствии с условием задачи. Выбирают ряд точек на ветви десорбции (не менее шести—восьми), соответствующих определенным значениям p/pS, и рассчиты­вают объем пор, заполненных конденсатом, по уравнению V=aVm. Затем для этих же значений по уравнению

Уравнение фрейндлиха в линейной форме

рассчитывают максимальный радиус пор, заполненных конденсатом при соответствующих давлениях p/ps. Полученные данные записывают в табл. 5 и строят структурную кривую адсорбента в координатах V=f(r). Из кривой находят ряд значений ΔV/Δr (табл.6) и строят дифференциальную кривую распределения объёма пор по радиусам в координатах ΔV/Δr=f(r)

Таблица.5 Данные для построения интегральной кривой распределения объёма пор по радиусам.

№ точкиP/PSaдес·10 3 ,моль/кгV·10 6 ,м 3 /кгr·10 10 ,м
0,05 0,1 0,2 0,4 0,6 0,8 0,9 0,980,5 3,7 7,0 7,9 9,0 10,0 10,9 11,50,9 66,6 126,0 142,0 162,0 180,0 196,0 207,02,2 4,6 6,6 8,5 11,6 15,5 20,2 26,3

Таблица.6 Данные для построения дифференциальной кривой распределения объёма по радиусам.

ΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,м
1,5 0,5

Рис.3 Интегральная(1) и дифференциальная(2) кривые распределения.

Уравнение фрейндлиха в линейной форме

Задачи

1. Ниже приведены экспериментальные данные по адсорбции азота на TiO2 (рутиле) при 75 К:

P·10 2 Па……….60,94 116,41 169,84 218,65 275,25

А, моль/кг……. 0,367 0,417 0,467 0,512 0,567

Постройте график соответствующий линейному уравнению БЭТ. Найдите константы Уравнение фрейндлиха в линейной формеи k. Рассчитайте удельную поверхность адсорбента. Давление насыщенного пара азота при указанной температуре Рs=78300 Па, площадь,

занимаемая одной молекулой азота S0=0,16 нм 2 .

2.Окись углерода адсорбируется на слюде; данные при 90 К представлены ниже. Определите, какой изотерме – Лэнгмюра или Фрейндлиха – лучше соответствуют эти данные? Каково значение К для адсорбционного равновесия? Взяв общую поверхность равной 6200см 2 , рассчитайте площадь, занимаемую каждой адсорбированной молекулой.

Vа, см 3 ……………..0,130 0,150 0,162 0,166 0,175 0,180

Р, мм. рт. cт.………. 100 200 300 400 500 600.

3.При измерении адсорбции газообразного азота на активном угле при 194.4К были получены следующие данные:

р·10 -3 , Па……………….1,86 6,12 17,96 33,65 68,89

А·10 3 , м 3 /кг…………..…5,06 14,27 23,61 32,56 40,83

Значения А даны для азота при нормальных условиях.

Рассчитайте, постоянные в уравнение Лэнгмюра и удельную поверхность активированного угля, принимая плотность газообразного азота равной

1,25 кг/м 3 , а площадь занимаемую одной молекулой азота на поверхности адсорбента, равной 0,16 нм 2 .

4.При измерении адсорбции азота на активированном угле при 273 К были получены следующие данные:

А,см 3 /г…………..……0,987 3,04 5,08 7,04 10,31

Р, мм. рт. ст…….……3,93 12,98 22,94 34,01 56,23

Построить график в координатах, в которых происходит спрямление уравнения изотермы Лэнгмюра, и определить константы этого уравнения.

5.Определите константы эмпирического уравнения Фрейндлиха, используя следующие данные об адсорбции диоксида углерода на активном угле при 293 К:

Р·10 -3 , Па…………1,00 4,48 10,0 14,4 25,0 45,2

А·10 2 , кг/кг……….3,23 6,67 9,62 11,72 14,5 17,7.

6.Используя уравнение БЭТ, построить изотерму адсорбции бензола по нижеуказанным данным и рассчитайте удельную поверхность адсорбента по изотерме адсорбции бензола (варианты 1-4):

1. P/Ps.………..0,04 0,08 0,16 0,22 0,27 0,36 0,46

А, моль/кг……. 0,348 0,483 0,624 0,724 0,805 0,928 0,13

2. Р/Рs………. 0,05 0,12 0,19 0,26 0,34 0,44 0,50

А, моль/кг ……. 0,31 0,593 0,795 0,99 1,21 1,525 1,77

3. Р/Рs……….…0,03 0,07 0,12 0,17 0,24 0,31 0,38

А, моль/кг……. 0,196 0,301 0,373 0,423 0,488 0,52 0,625

4. Р/Рs…………. 0,02 0,05 0,11 0,19 0,25 0,3 0,36

А, моль/кг……. 0,104 0,196 0,298 0,387 0,443 0,488 0,55

Площадь, занимаемую молекулой бензола, примите равной 0,49 нм 2 .

7.Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по данным об адсорбции азота:

А•10 3 , м 3 /кг…………..0,71 0,31 0,93 1,09

Площадь занимаемая молекулой азота в плотном монослое, равна 0,16 нм 2 ,

Плотность азота 1,25 кг/м 3 .

8.При обработке данных по адсорбции азота на графитированной саже при 77 К с помощью графика, соответствующего линейному уравнению БЭТ,

найдено, что тангенс угла наклона прямой составляет 1,5•10 3 , а отрезок, отсекаемый на оси ординат, равен 5 единицам (адсорбция выражена в м 3 азота на 1 кг адсорбента при нормальных условиях). Рассчитайте удельную поверхность адсорбента, предполагая, что площадь, занимаемая одной молекулой азота, равна 0,16 нм 2 .

9.Ниже приведены результаты измерения адсорбции газообразного криптона (при 77,5К) на катализаторе:

А·10 3 , м 3 /кг…………1,27 1,5 1,76 1,9 1,98

Р, Па……………..…13,22 23,99 49,13 75,70 91,22.

Значения А для криптона даны при нормальных условиях. Определите константы уравнения БЭТ и удельную поверхность катализатора, принимая, что один атом криптона занимает площадь 0,195нм 2 , Рs=342,6 Па, плотность криптона равна 3,74 кг/м 3

10.используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по изотерме адсорбции азота:

А, моль/кг……..2,16 2,39 2,86 3,02 3,22 3,33

Площадь занимаемая одной молекулой азота в адсорбционном слое 0,16 нм 2 .

11.По изотерме адсорбции азота определить удельную поверхность адсорбента

(Т=77 К, S0=16,2·10 -20 м 2 ). (Варианты 1-5).

1. Р/Рs………. 0,04 0,09 0,16 0,20 0,30

А, моль/кг… .2,20 2,62 2,94 3,11 3,58

2. Р/Рs…………0,029 0,05 0,11 0,14 0,20

А, моль/кг………..2,16 2,39 2,86 3,02 3,33

3. Р/Рs………….0,02 0,04 0,08 0,14 0,16 0,18

А, моль/кг………..1,86 2,31 2,72 3,07 3,12 3,23

Для следующих двух вариантов объем адсорбированного газа приведен к нормальным условиям:

4. Р/Рs…………….…0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 м 3 /кг……………..0,70 1,10 1,17 1,32 1,45 1,55

5. Р/Рs……………….0,029 0,05 0,11 0,14 0,18 0,20

А·10 2 м 3 /кг……..……..0,48 0,54 0,64 0,68 0,72 0,75

12.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49•10 -20 м 2 . Объем адсорбированного газа приведен к нормальным условиям (варианты 1-4):

1. Р/Рs…………………….0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 , м 3 /кг………………..0,86 1,20 1,40 1,60 1,80 1,90

2. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг……….………..1,15 1,37 1,55 1,71 1,86 1,99

3. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг………………..0,89 1,09 1,27 1,45 1,60 1,78

4. Р/Рs…………………….0,08 0,16 0,25 0,35 0,45 0,52

А·10 2 , м 3 /кг………..… ……1,03 1,37 1,70 1,99 2,44 2,82

13.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49·10 -20 м 2 (варианты 1-3).

1. Р/Рs……………..0,05 0,10 0,15 0,20 0,30 0,40

А, моль/кг…. ………0,36 0,51 0,60 0,68 0,82 0,98

2. Р/Рs…………. ….0,06 0,12 0,20 0,30 0,40 0,50

А, моль/кг…. ………..0,08 0,16 0,25 0,35 0,45 0,52

3. Р/Рs…………. ….0,46 0,61 0,76 0,89 1,09 1,26

14.Построить изотерму адсорбции нитролигнина на глине и определить константы уравнения Фрейндлиха по следующим экспериментальным данным:

Концентрация водного раствора нитролигнина

Г·10 3 , кг/кг……………………5,0 12,0 21,0 26,0 35,0 38,0.

15.Пользуясь экспериментальными данными ионного обмена ионов кальция (Г1с1) и натрия (Г2с2) на синтетическом катионите, определить графически константу уравнения Никольского К:

Уравнение фрейндлиха в линейной форме Уравнение фрейндлиха в линейной формев растворе…………….0,2 0,3 0,4 0,5 0,6 0,8

Уравнение фрейндлиха в линейной формена сорбенте…………..0,75 1,0 1,5 1,8 2,4 3,1.

16.Пользуясь константами уравнения Фрейндлиха k=4,17·10 -3 , 1/n=0,4, рассчитать и построить изотерму адсорбции углекислого газа на угле для следующих интервалов давления: 100·10 2 , 200·10 2 , 400·10 2 , 500·10 2 Н/м 2 .

17. Пользуясь константами уравнения Фрейндлиха k=3,2·10 -3 , 1/n=0,6 построить кривую адсорбции углекислого газа на угле в интервале давлений от 5·10 2 до 25·10 2 Н/м 2 .

18. По данным сорбции углекислого газа на угле построить изотерму адсорбции и определить константы изотермы адсорбции Фрейндлиха:

Р·10 -2 , Н/м 2 ……………..5,0 10,0 30,0 50,0 75,0 100,0

Г·10 3 , кг/кг……………..30, 5,5 16,0 23,0 31,0 35,0.

19. При изучении реакций обмена Mg-ионов из чернозема с ионами Ca из внесенных минеральных удобрений получены следующие результаты:

Концентрация ионов в растворе Количество сорбированных катионов

С·10 3 , кмоль/м 3 Г·10 5 ,кмоль/кг

2,41 4,75 8,12 42,88

2,25 5,00 7,70 43,30

2,00 5,10 6,90 44,10

1,84 5,50 6,10 44,90

1,53 5,87 4,54 46,46

1,37 5,99 4,12 46,88

Графическим методом определить константу уравнения Никольского.

20.Оределить константу уравнения Никольского К, используя экспериментальные данные реакций обмена ионов Ca из почвы на ионы Na из раствора натриевой соли.

Концентрация ионов в растворе Na…3,26 6,60 13,80 21,25 38,41 65,19

С·10 3 , кмоль/м 3 Ca.…37,84 36,72 34,62 31,87 26,16 17,10

Количество сорбированных Na….0,28 0,60 1,20 1,89 3,18 7,62

ионов Г·10 5 , кмоль/кг Ca…39,72 39,56 39,40 38,93 38,68 37,40

21.Пользуясь экспериментальными данными реакций обмена ионов ионов Na из раствора натриевой соли на ионы Mg из почвы, определить графически константу уравнения Никольского:

Концентрация ионов в растворе Количество сорбированных ионов

С·10 3 ,кмоль/м 3 на почве Г.10 5 , кмоль/кг

13,82 41,92 1,16 25,40

21,25 38,30 1,89 26,13

38,19 31,90 3,62 27,20

65,0 21,14 8,01 29,32

79,25 14,73 11,66 32,84

22. Используя экспериментальные данные адсорбции анилина из его водного раствора на угле, определить графически константы уравнения Лэнгмюра и построить изотерму адсорбции для следующих с1:

C1·10 4 , кмоль/м 3 ……………………3 5 10 15 20

анилина с·10 4 , кмоль/ м …………1,0 4,0 7,5 12,5 17,5

А·10 9 ,кмоль/м 2 …………….……0,3 0,58 0,70 0,87 0,92

23.По экспериментальным данным построить кривую адсорбции углекислого газа на цеолите при 293º и с помощью графического метода определить константы уравнения Лэнгмюра:

Р·10 -2 , н/м 2 ……………….1,0 5,0 10,0 30,0 75,0 100,0 200,0

А·10 3 , кг/кг………………35,0 86,0 112,0 152,0 174,0 178,0 188,0

24.Используя уравнение Лэнгмюра, вычислить величину адсорбции азота на цеолите при давлении р=2,8·10 2 , если А=38,9·10 -3 кг/кг, а k=0,156·10 -2 .

25. Найти площадь, приходящуюся на одну молекулу в насыщенном адсорбционном слое анилина на поверхности его водного раствора, если предельная адсорбция А=6,0·10 -9 кмоль/м

26.По экспериментальны данным адсорбции углекислого газа на активированном угле, найти константы уравнения Лэнгмюра, пользуясь которыми рассчитать и построить изотерму адсорбции:

P·10 -2 , Н/м2……………..9,9 49,7 99,8 200,0 297,0 398,5

Г·10 3 , кг/кг……………..32,0 70,0 91,0 102,0 107,3 108,0.

27.По константам уравнения Лэнгмюра А=182·10 -3 и k=0,1·10 -2 рассчитать и построить изотерму адсорбции углекислого газа на активированном угле в пределах следующих равновесных давлений газа: 10·10 2 – 400·10 2 Н/м.

28.Построить кривую адсорбции углекислого газа на активированном угле при 231 º и определить константы эмпирического уравнения Фрейндлиха, пользуясь следующими экспериментальными данными:

Р·10 -2 , Н/м 2 ………………10,0 44,8 100,0 144,0 250,0 452,0

А·10 3 , кг/кг……………….32,3 66,7 96,2 117,2 145,0 177,0.

29. Используя константы эмпирического уравнения Фрейндлиха k=1,6·10 -3 и 1/n=0,48, построить кривую адсорбции углекислого газа на активированном угле при 271 º в интервале давлений от 2·10 2 до 30·10 2 Н/м 2 .

30. Определить постоянные эмпирического уравнения Фрейндлиха, используя следующие данные для адсорбции при 231К углекислого газа на угле из коксовой скорлупы:

Р, Па·10 -3 ……………….1,000 4,480 10,000 14,40 25,0 45,2

А, кг/кг·10 2 ………………3,23 6,67 9,62 11,72 14,5 17,7.

31. Вычислите площадь поверхности катализатора, если для образования монослоя на нем должно адсорбироваться 103 см 3 /г азота (объем приведен к 760 мм рт.ст. и 0ºС). Адсорбция измеряется при температуре 195ºС. Эффективная площадь, занимаемая молекулой азота при этой температуре, равна 16,2 А 2 .

32.Площадь поверхности 1 г активированного угля равна 1000 м 2 . Какое количество аммиака может адсорбироваться на поверхности 45 г угля при 45ºС и 1 атм, если принять в качестве предельного случая полное покрытие поверхности? Диаметр молекулы аммиака равен 3·10 -10 м. Принимается, что молекулы касаются друг друга так, что центры четырех соседних сфер расположены в углах квадрата.

33. Ниже представлены данные по хемосорбции водорода на порошке меди при 25ºС. Подтвердите, что они подчиняются изотерме Ленгмюра. Затем найдите значение К для адсорбционного равновесия и адсорбционный объем, соответствующий полному покрытию.

Р, мм рт ст…………………..0,19 0,97 1,90 4,05 7,5 11,95

Vа, см 3 ……………………….0,042 0,163 0,221 0,321 0,411 0,471.

34. Определите, какая изотерма – Лэнгмюра или Фрейндлиха – лучше соответствует данным для адсорбции метана на 10 г сажи при 0ºС, приведенным ниже:

Видео:5.1. Адсорбция. Классификация адсорбцииСкачать

5.1. Адсорбция. Классификация адсорбции

Уравнение фрейндлиха в линейной форме

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

Уравнение фрейндлиха в линейной форме

Уравнение фрейндлиха в линейной форме

Уравнение фрейндлиха в линейной форме

Уравнение фрейндлиха в линейной форме

Изотерма адсорбции Фрейндлиха в обычных (а) и логарифмических (б)
координатах

Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения, получаем:

Уравнение фрейндлиха в линейной форме

Уравнение фрейндлиха в линейной форме

Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lga, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации:

Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Уравнение Фрейндлиха

Теоретические представления, развитые Лэнгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г.Фрейндлих предположил, что число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m) должна быть пропорциональна равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенной в некоторую степень, которая всегда меньше единицы:

Уравнение фрейндлиха в линейной форме(IV.15)

Уравнение фрейндлиха в линейной форме(IV.16)

Уравнение фрейндлиха в линейной форме

Рис. 4.7. Изотерма адсорбции Фрейндлиха в логарифмических координатах.

Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения (IV.15 — IV.16), получаем:

Уравнение фрейндлиха в линейной форме(IV.17)

Уравнение фрейндлиха в линейной форме(IV.18)

Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lga, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации (рис. 4.7):

Уравнение фрейндлиха в линейной форме(IV.19)

4.1.5 Адсорбция на границе твердое тело – раствор

🔍 Видео

Линейные диофантовы уравненияСкачать

Линейные диофантовы уравнения

Уравнение ЛенгмюраСкачать

Уравнение Ленгмюра

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Практическое занятие 4. Адсорбция на границе твердое тело – газСкачать

Практическое занятие 4. Адсорбция на границе твердое тело – газ

АдсорбцияСкачать

Адсорбция

Адсорбция на твёрдой поверхностиСкачать

Адсорбция на твёрдой поверхности

Уравнения Лагранжа второго рода. Задача 1Скачать

Уравнения Лагранжа второго рода. Задача 1

Поверхностные явления: адгезия, смачивание, адсорбция | Коллоидная химияСкачать

Поверхностные явления: адгезия, смачивание, адсорбция | Коллоидная химия

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядка

Урок 101 (осн). Связь коэффициентов линейного и объемного расширенияСкачать

Урок 101 (осн). Связь коэффициентов линейного и объемного расширения

Полезные мелочи | алгоритм Евклида | диофантовы уравнения | примеры | 1Скачать

Полезные мелочи | алгоритм Евклида | диофантовы уравнения | примеры | 1

Поверхностные явленияСкачать

Поверхностные   явления

Практическое занятие 6. Адсорбция на границе раствор – газСкачать

Практическое занятие 6. Адсорбция на границе раствор – газ

Уравнение Эйлера - bezbotvyСкачать

Уравнение Эйлера - bezbotvy

Поверхностные явления. Адсорбция на неподвижных границах раздела фаз.Скачать

Поверхностные явления. Адсорбция на неподвижных границах раздела фаз.

#86. Делимость и диофантовы уравнения! ТРУДНАЯ ЗАДАЧА!Скачать

#86. Делимость и диофантовы уравнения! ТРУДНАЯ ЗАДАЧА!

Ягола А. Г. - Вариационное исчисление - Метод регуляризации ТихоноваСкачать

Ягола А. Г. - Вариационное исчисление - Метод регуляризации Тихонова
Поделиться или сохранить к себе: