Уравнение фигуры — это уравнение с двумя переменными x и y, для которого выполняются два условия: 1) координаты любой точки фигуры F удовлетворяют этому уравнению.
Содержание:
- Понятие уравнения фигур
- Уравнение прямой
- Уравнения окружности и сферы
- Пример 2.
- Система координат в пространстве — определение с примерами решения
- Система координат в пространстве
- Декартова система координат в пространстве
- Расстояние между двумя точками
- Уравнение сферы и шара
- Координаты середины отрезка
- Векторы в пространстве и действия над ними
- Векторы в пространстве
- Действия над векторами в пространстве
- Свойства суммы векторов
- Правило треугольника сложения векторов
- Правило параллелограмма сложения векторов
- Правило многоугольника сложения векторов
- Коллинеарные и компланарные векторы
- Скалярное произведение векторов
- Свойства скалярного произведения векторов
- Преобразование и подобие в пространстве
- Геометрические преобразования в пространстве
- Движение и параллельный перенос
- Центральная симметрия в пространстве
- Симметрия относительно плоскости
- Поворот и симметрия относительно оси
- Симметрия в природе и технике
- Подобие пространственных фигур
- Уравнение фигуры
- 🎥 Видео
Понятие уравнения фигур
Название этого раздела означает: геометрические фигуры можно задавать уравнениями (некоторые фигуры можно задавать неравенствами).
Известно, что точки плоскости и пространства задаются их координатами, геометрические фигуры могут задаваться уравнениями или неравенствами: 


Говорят, что фигура F задается уравнением в прямоугольных координатах, если точка принадлежит фигуре F тогда и только тогда, когда координаты этой точки удовлетворяют данному уравнению. Это означает, что выполняются два условия:
1. Если точка принадлежит фигуре F, то ее координаты удовлетворяют данному уравнению.
2. Если числа х, у, г удовлетворяют данному уравнению, то точка с такими координатами принадлежит фигуре F.
Второе условие можно выразить иначе: координаты любой точки, не принадлежащей фигуре F, не удовлетворяют данному уравнению.
Например, прямая, перпендикулярная оси Ох и проходящая через точку М(2, 0), на оси Ох задается уравнением х = 2 (рис. 2.461). Действительно, каждая точка, лежащая на этой прямой, имеет одну и ту же координату 2. А любая точка, не лежащая на этой прямой, имеет другое значение координаты х, нежели 2. Ось Оу задается уравнением х = 0.
Аналогично прямая, перпендикулярная оси Оу и проходящая через точку Щ0, 3), имеет уравнение у = 3 (рис. 2.462). Ось Ох имеет уравнение у = 0.
Уравнение прямой
Можно доказать такую теорему.
Теорема 3. Любая прямая в декартовой системе координат хОу имеет уравнение вида 

Выясним, как расположена прямая относительно осей координат, если ее уравнение 
1. 
Таким образом, все точки прямой имеют одну и ту же ординату 
2. 
3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 2.465).
Если в общем уравнении прямой 


Коэффициент k в уравнении прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью Ох. В уравнении прямой, изображенной на рисунке 2.466, k > 0.
Коэффициент k в уравнении прямой называют угловым коэффициентом прямой.
Уравнения окружности и сферы
Составим уравнение окружности с центром в точке 
1. Возьмем произвольную точку А(х, у) на окружности. Расстояние от нее до центра О равно R.
2. Квадрат расстояния от точки А до точки О равен 
3. Координаты х, у каждой точки А окружности удовлетворяют уравнению
(2, определение окружности).
Получили искомое уравнение. Обратно: любая точка А, координаты которой удовлетворяют уравнению окружности, принадлежит окружности, так как расстояние от нее до точки О равно R. Отсюда следует, что данное уравнение действительно является уравнением окружности с центром в точке О и радиусом R.
Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:
Выведем теперь уравнение сферы. Пусть в пространстве введена прямоугольная система координат и задана сфера S с центром 
Пусть х, у, z — координаты точки М. Согласно формуле расстояния между точками в пространстве, предыдущее равенство можно записывать в координатах так:
Это и есть уравнение сферы S с центром 
Если центр А находится в начале координат, т. е. 
Рассмотрим шар с центром 
По определению, это множество точек М, для которых 

Это неравенство задает шар S с центром 

Если центр шара находится в начале координат, то уравнение шара упрощается и имеет вид:
Два предприятия A и В производят продукцию с одной и той же ценой т за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 руб. на 1 км, а для предприятия В 20 руб. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть разделен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными?
Решение:
1. Выберем систему координат так, чтобы ось Ох проходила через пункты А и В, а ось Оу — через точку А (построение) (рис. 2.470).
2. Пусть N — произвольная точка, 
3. При доставке груза из пункта А расходы равны 
4. При доставке груза из пункта Б расходы равны 
5. Если для пункта N выгоднее доставлять груз с предприятия А, то 


6. Таким образом, границей этих двух областей для каждой точки, до которой расходы на перевозку груза из пунктов А и Б равны, будет множество точек плоскости, удовлетворяющих уравнению 
7. Выразим 

8. Имея в виду равенство из п. 6, получим:

9. Это есть уравнение окружности (рис. 2.472).
Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, — из пункта А.
Пример 2.
Два наблюдаемых пункта находятся в точках 


Решение:
Из условий задачи имеем:
1. Два наблюдаемых пункта находятся в точках
2. Пункт наблюдения О находится на прямой АВ и удален от А на расстоянии 

3. Наблюдатель идет так, чтобы расстояние до пункта А было в два раза больше, чем до В.
4. По какой линии должен идти наблюдатель?
5. Примем за начало координат наблюдательный пункт О и направление оси Ох будет проходить через пункты А и В (по условию задачи эти три точки находятся на одной прямой) (рис. 2.473).
6. Пусть наблюдатель находится в точке М(х, у). Вычислим расстояние от наблюдателя до пунктов А и В (рис. 2.473):
(1, 2, 3, 5, формула расстояния между точками).
7. По условию задачи имеем: МА = 2MB, т. е.

8. Решая это уравнение, получим:
9. Раскроем скобки и перегруппируем:
10. Наблюдатель должен идти по окружности с центром 

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Система координат в пространстве — определение с примерами решения
Содержание:
Видео:11. Прямая в пространстве и ее уравненияСкачать

Система координат в пространстве
Декартова система координат в пространстве
Вы познакомились с декартовой системой координат на плоскости в предыдущих классах. Систему координат в пространстве введём аналогично тому, как это было сделано на плоскости. Рассмотрим три взаимно перпендикулярных оси Ох, Оу и Оz, пересекающихся в точке О, являющейся началом координат. Через каждую пару этих прямых проведём плоскости Оху, 0xz и Оуz (рис. 1). Таким образом вводится система координат в пространстве, при этом
точку О — называют началом координат, прямые Ох, Оу и Оz — осями координат, Ох — ось абсцисс, Оу — ось ординат и Оz — ось аппликат, плоскости Оху, Оуz и Охz — координатными плоскостями.
Координатные плоскости делят пространство на 8 октант (получетвертей) (рис. 1).
Пусть в пространстве задана произвольная точка А. Через эту точку проведём плоскости, перпендикулярные плоскостям Охz, Оуz и Охz (рис. 2). Одна из этих плоскостей пересечёт ось Ох в точке Ах.
Координату Ах на оси Ох называют координатой х или абсциссой точки А.
Аналогично определяют у — координату (ординату) и z- координату (аппликату) точки А.
Координаты точки А записывают в виде А (х; у; z) или короче (х; у; z). Точки, изображённые на рисунке 3, имеют следующие координаты: А (0; 5; 0), B (4; 0; 0), М (0; 5; 4), К (2; 3; 4), Р (-2; 3; -4).
Пример:
Пусть в пространстве в декартовой системе координат
задана точка А (2; 3; 4). Где она расположена?
Решение:
От начала координат в положительном направлении осей Ох и Оу отложим отрезки ОАх = 2 и ОАу = 3 (рис. 4).
Через точку Ах проведём прямую, лежащую в плоскости Оху и параллельную оси Оу. А через точку Аy проведём прямую, лежащую в плоскости Оху и параллельную оси Ох. Точку пересечения этих прямых обозначим A1 . Через точку A1 проведём прямую, перпендикулярную плоскости Оху и на ней в положительном направлении Oz отложим отрезок АА1 = 4. Тогда точка А (2; 3; 4) и будет искомой точкой.
Пользуясь системой координат, созданной для современных программируемых станков и автоматизированных роботов, составляются программы, на основе которых обрабатываются металлы (рис. 5).
Расстояние между двумя точками
1.Сначала рассмотрим случай, когда прямая АВ не параллельна оси Оz (рис. 6). Через точки А и В проведём прямые, параллельные оси Оz. И пусть они пересекают плоскость Оху в точках Аz и Вz .
Координаты х и у этих точек соответственно равны координатам х и у точек А, В, а координаты z равны 0.
Теперь через точку В проведём плоскость а, параллельную плоскости Оху. Она пересечёт прямую ААz в некоторой точке С.
По теореме Пифагора: АВ 2 = АС 2 + СВ 2 .
Однако
Поэтому
2.Пусть отрезок АВ параллелен оси Оz, тогда 
Следовательно, расстояние между двумя точками А и В:

Примечание. Формула (1) выражает длину диагонали прямоугольного параллелепипеда, измерения которого равны
Уравнение сферы и шара
Известно, что множество всех точек М (х; у; z), расположенных на расстоянии R от данной точки А (а; Ь; с) образуют сферу (рис. 7). Тогда по формуле (1) координаты всех точек, расположенных на сфере радиуса R с центром в точке А (а; b; с), удовлетворяют равенству
Отсюда, ясно, что неравенство для точек шара радиуса R с центром в
точке А (а; b; с) имеет вид:
Пример:
Найдите периметр треугольника ABC с вершинами в
Решение:
Р=АВ+АС+ВС периметр треугольника ABC. Воспользовавшись формулой 
Следовательно, треугольник ABC равносторонний и его периметр 
Ответ:
Координаты середины отрезка
Пусть А (x1; y1;z1) и В (х2; у2; z2) — произвольные точки, точка С (х; у; z) середина отрезка AB (рис. 8).
Через точки А, В и С проведём прямые, параллельные оси пересекающие плоскость Оху в точках 

Отсюда по формулам нахождения координат середины отрезка на плоскости
Чтобы найти координату z, нужно вместо плоскости Оху рассмотреть плоскость 0xz или Оуz.
Тогда и для z получим формулу, подобную вышеприведённой.
Аналогично, используя координаты концов A и B отрезка AB, по формулам
находят координаты точки Р(х1;у]; г,), делящей отрезок АВ в отношении X САР: РВ = X).
Доказательство: Для решения задачи используем признак параллелограмма: Четырёхугольник, точка пересечения диагоналей которого делит их пополам, является параллелограммом.
Координаты середины отрезка МК:
Координаты середины отрезка NL:
Координаты середин отрезков МК и NL равны. Это говорит о том, что отрезки пeрeсeкаются и в точке пeрeсeчeния делятся пополам. Следовательно, четырёхугольник MNLK — параллелограмм.
В переписке с известным целителем и математиком Абу Али ибн Сино Абу Райхон Беруни задаёт следующий вопрос: «Почему Аристотель и другие (философы) называют шесть сторон?»
Рассматривая шестисторонний куб, Беруни говорит о фигурах «с другим количеством сторон» и добавляет, что «шарообразные фигуры не имеют сторон.» А Ибн Сино отвечает, что «во всех случаях нужно считать, что сторон шесть, так как у каждой фигуры, независимо от её формы, есть три измерения — длина, глубина и ширина».
Здесь Ибн Сино имеет ввиду три координаты, именуемые условно «шесть сторон».
В произведении «Канон Масъуда» Беруни приводит точное математическое определение шести сторон: «Сторон шесть, так как они ограничивают движение фигур по своим измерениям. Измерений три: длина, ширина и глубина. А их в два раза больше самих измерений.»
В предыдущих книгах автор определяет положение небесных тел с помощью двух координат относительно небесной сферы — эклиптического уравнения. Либо через те же координаты, но относительно небесного экватора или горизонта. Однако при определении взаимного расположения звёзд и небесных светил придётся учитывать и случаи затмений. Вот в таких случаях появляется необходимость в третьей сферической координате. Эта необходимость привела Беруни к отказу от теории небесных координат.
Векторы в пространстве и действия над ними
Векторы в пространстве
Понятие вектора в пространстве вводят также как на плоскости.
Вектором в пространстве называют направленный отрезок. Основные понятия, относящиеся к векторам в пространстве, аналогичны этим понятиям на плоскости: длина (модуль), направление вектора, равенство векторов.
Координатами вектора с началом в точке А (х1; у1; z1) и концом в точке В (х1; у1; z1) называют числа 
Приведем без доказательства свойства векторов, аналогичных свойствам на плоскости.
Также как на плоскости, соответствующие координаты равных векторов равны и, обратно, векторы с равными координатами равны.
Hа основании этого вектор можно обозначить как 


Вектор можно записать и без координат 

на первом месте начало вектора, а на втором — конец.
Вектор с координатами, равными нулю, называют нулевым вектором и обозначают 

Если начало вектора расположено в начале координат О, а числа а1,
координатами вектора 

Однако вектор в пространстве 


Отсюда следует, что вектор можно приложить к любой точке пространства. В геометрии мы рассматриваем такие свободные векторы. Но в физике, обычно вектор связан с некоторой точкой. Например, воздействие силы приложенная к пружине F на рисунке 19 зависит от точки её приложения.
Длинной вектора называют длину направленного отрезка
изображающего его (рис. 17). Длину вектора 
так

вычисляется по формуле 
Пример:
Даны точки А (2; 7;-3),В (1; 0; 3), С (-3;-4; 5) и D (-2; 3; -1). Какие из векторов 

Решение:
У равных векторов равны соответствующие координаты. Поэтому найдём координаты векторов:
Следовательно, 
Докажите самостоятельно, что
Действия над векторами в пространстве
Действия над векторами. Сложение векторов, умножение на число и их скалярное произведение определяется также как на плоскости.
Суммой векторов 


Пусть кран на рисунке 20.b движется вдоль вектора 


Свойства суммы векторов
Для любых векторов 


a) 
b) 
Правило треугольника сложения векторов
Для любых точек А, В и С (рис. 21):
Правило параллелограмма сложения векторов
Если АВСD — параллелограмм (рис. 22), то
Правило многоугольника сложения векторов
Если точки А, В, С, D и Е — вершины многоугольника (рис. 23), то
Правило параллелепипеда сложения трёх векторов, не лежащих в одной плоскости. Если АВСDА1В1С1D1 параллелепипед (рис. 24), то

Вектор 





Для любых векторов 


а)
b)
c) 
совпадает с направлением вектора 

противоположно направлению вектора 

Коллинеарные и компланарные векторы
Пусть заданы ненулевые векторы 



то их называют коллинеарными векторами (рис. 26).
Свойство 1. Если для векторов 


Если 




противоположно направлены 
Свойство 2. Если векторы 

то их соответствующие координаты пропорциональны:

Пример:
Найдите вектор с началом в точке А (1; 1; 1) и концом в точке В, лежащей в плоскости Оху, коллинеарный вектору 
Решение:
Пусть точка В имеет координаты В (х; у; z). Так как точка В лежит в плоскости Оху, то z=0. Тогда 
По условию задачи векторы 

Тогда получаем следующие пропорции 
Откуда находим 

Итак,
Векторы, лежащие в одной плоскости или параллельных плоскостях, называют компланарными векторами (рис. 27).
Векторы 


Любой вектор 

Точно также, если заданы три нeкомпланарных вектора 



Здесь 
Скалярное произведение векторов
Углом между ненулевыми векторами 





Угол между векторами 


Скалярным произведением векторов 

Если один из векторов нулевой, то скалярное произведение этих векторов равно нулю.
Скалярное произведение обозначают 


Из определения следует, что если скалярное произведение векторов 

В физике работа A, выполненная при движении тела на расстоянии 



Свойство. Если 


Доказательство. Приложим векторы 

координат О (рис.32). Тогда 


Если векторы неколлинеарны, то получаем треугольник АВО , для которого справедлива теорема косинусов.
Тогда 
Однако, 
и 
Следовательно,

Самостоятельно докажите, что и в случае, когда данные векторы коллинеарны 
это равенство.
Свойства скалярного произведения векторов
1. 
2. 
3. 
4.Если векторы а и b являются сонаправленными коллинеарными
векторами, то 
5.Если же векторы противоположно направлены, то 
6. 
7. Если вектор 





с) условие перпендикулярности векторов 


Пример:


Решение:
Найдём длины векторов 




Пример:
Найдите угол между векторами 
Решение:

Пример:
Найдите 





Решение:
Пример:
Найдите координаты и длины векторов 1)


Решение:
Подставим в выражения искомых векторов разложения векторов 

1)


Тогда
2)

Следовательно, 
Тогда
Пример:
Найдите произведение




Решение:
Сначала найдём поизведение векторов 


Затем перемножим заданные выражения как многочлены
и, пользуясь распределительным свойством умножения
вектора на число, получим:

Учитывая, что 

Преобразование и подобие в пространстве
Геометрические преобразования в пространстве
Если каждую точку заданной в пространстве фигуры F изменить одним и тем же способом, то получим фигуру F1. Если при этом преобразовании различные точки первой фигуры переходят в различные точки второй, то говорят о преобразовании геометрической фигуры.
Если рассматривать все пространства как геометрическую фигуру, то также можно говорить о преобразовании геометрической фигуры.
Понятие геометрического преобразование в пространстве вводят также как на плоскости. Следовательно, свойства некоторых рассматриваeмых ниже видов преобразований и их доказательства также подобны соответствующим им на плоскости. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.
Движение и параллельный перенос
Преобразование фигур, при котором сохраняются расстояния между точками, называют движением. Можно привести следующие свойства движения. При движении прямая переходит в прямую, луч — в луч, отрезок — в равный ему отрезок, угол — в равный ему угол, треугольник — в равный ему треугольник, плоскость — в плоскость, тетраэдр — в равный ему тетраэдр.
В пространстве фигуры, которые можно перевести одну в другую при некотором движении называют равными фигурами.
Простейшим примером движения является параллельный перенос.
Пусть в пространстве даны вектор 
(рис. 44). Говорят, что точка Х перешла в точку X1 параллельным
переносом на вектор 


Каждая точка подъёмного крана, изображённого на рисунке 46, параллельно перенесена на 40 м относительно начального положения.
Ясно, что параллельный перенос является движением. Поэтому прямая переходит в прямую, луч — в луч, плоскость — в плоскость,
Пусть точка 
фигуры F1 при помощи параллельного переноса
на вектор 
Тогда по определению получим:


Эти равенства называют формулами параллельного переноса.
Пример:
В какую точку перейдёт точка Р (-2; 4; 6) при параллельном переносе на вектор 
Решение:
По вышеприведённым формулам параллельного переноса: 
Ответ: 
Центральная симметрия в пространстве
Если в пространстве 
Если в пространстве каждая точка фигуры F переходит в точку, симметричную относительно точки О (рис. 47), то такое преобразование называют симметрией относительно точки О. На рисунках 48, 49 изображёны фигуры симметричные относительно точки О. Симметрия относительно точки является движением.
Если при симметрии относительно точки О фигура F переходит в себя, то её называют центрально симметричной фигурой.
Например, диагонали параллелепипеда (рис. 50) относительно их точки пересечения О являются центрально симметричными фигурами.
Пример:
В какую точку перейдет точка A = (1; 2; 3) при симметрии относительно точки О (2; 4; 6)?
Решение:
Пусть А1 = (х; у; z) — искомая точка. По определению точка
О — середина отрезка АА1. Следовательно,
Из этих уравнений получаем:

Ответ:
Симметрия относительно плоскости
Точки А и А1 называют симметричными относительно плоскости а,
если плоскость перпендикулярна отрезку и делит его пополам (рис. 51). Фигуры F1, и F2 на рисунке 52 симметричны относительно
плоскости а. Очевидно, что наш силуэт и его отражение симметричны относительно плоскости зеркала (рис. 53).
Симметрия относительно плоскости а является движением.
Поэтому при симметрии относительно плоскости а отрезок переходит в равный ему отрезок, прямая — в прямую, плоскость — в плоскость.
Если при симмeтрии относительно плоскости фигура F переходит в себя, то её называют фигурой симметричной относительно плоскости.
Например, изображённый на рисунке 54 куб, есть фигура, симметричная относительно плоскости а, проходящей через его диагонали АА1 и СС1.
Поворот и симметрия относительно оси
Пусть в пространстве заданы точки А и А1 и прямая l. Если перпендикуляры АК и А1К, опущенные на прямую l, равны и образуют угол 

Если каждую точку фигуры F повернуть на угол 

Поворот относительно прямой также является движением.
Поворот на 180° относительно прямой l называют симметрией относительно прямой l.
Центр, ось и плоскость симметрии называют элементами симметрии. Точки, симметричные точке А (х; у; z) относительно координатных плоскостей, координатных осей и начала координат, будут иметь следующие координаты:
Симметрия в природе и технике
В природе на каждом шагу можно встретить симметрию.
Например, множество живых существ, в частности тела человека и животных, листья растений и цветы устроены симметрично (рис. 58). Также в неживой природе есть элементы, например, снежинки, кристаллы соли. Молекулярное строение веществ тоже состоит из симметричных фигур. Это, конечно, неспроста, поскольку симметричные фигуры не только красивы, но и самые устойчивые.
Раз так, то можно считать, что красота и совершенство природы построены на основе симметрии. Взяв за основу природную красоту и совершенство, строители, инженеры и архитекторы создают строения и механизмы, здания и сооружения, технику и транспортные средства симметричными. В этой работе им очень помогает наука геометрия.
Подобие пространственных фигур
Пусть 
при этом преобразовании для произвольных точек X1 и Х2 фигуры F1 и соответствующих им точек Y1 и Y2 фигуры 
Как видим, понятие преобразования подобия в пространстве вводится также как на плоскости. Следовательно, рассматриваемые ниже виды подобия, их свойства и доказательства этих свойств подобны соответствующим на плоскости. Поэтому, мы не будем останавливаться на их доказательствах и рекомендуем провести их самостоятельно. Преобразование подобия в пространстве отображает прямую в прямую, луч в луч, отрезок в отрезок и угол в угол. Точно также это преобразование плоскость отображает в плоскость.
Если в пространстве одна из фигур перешла в другую с помощью преобразования подобия, то эти фигуры называют подобными.
Пусть в пространстве задана фигура F, точка О и число к 



Вы видите, что определение гомотетии в пространстве аналогично соответствующему определению на плоскости. Следовательно, все свойства и их доказательства аналогичны. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.
Гомотетия относительно точки О с коэффициентом 




Если же прямая или плоскость проходят через центр гомотетии, то они отображаются в себя.
| Рекомендую подробно изучить предметы: |
|
| Ещё лекции с примерами решения и объяснением: |
- Иррациональные числа
- Действительные числа
- Решение уравнений высших степеней
- Системы неравенств
- Уравнения и неравенства
- Уравнения и неравенства содержащие знак модуля
- Уравнение
- Метод математической индукции
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Уравнение фигуры
Уравнение фигуры F в прямоугольной системе координат — это уравнение с двумя переменными x и y, для которого выполняются два условия:
1) координаты любой точки фигуры F удовлетворяют этому уравнению;
2) любая пара чисел (x; y), удовлетворяющая этому уравнению, является координатами некоторой точки фигуры F.
1) Уравнение вида
где a, b и c — числа (причем a и b не равны нулю одновременно) задаёт в прямоугольной системе координат уравнение некоторой прямой.
2) Уравнение вида
задаёт в прямоугольной системе координат окружность с центром в точке (a;b) и радиусом R.
🎥 Видео
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Математика это не ИсламСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Уравнение прямой в пространстве. 11 класс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая теория дифференциальных уравнений. Лекция 1. Ильяшенко Ю. С.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Взаимное расположение прямых в пространстве. 10 класс.Скачать

УРАВНЕНИЕ ОКРУЖНОСТИСкачать

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 7 урок, Уравнение прямойСкачать

Уравнение плоскости. 11 класс.Скачать

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Уравнение окружности (1)Скачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать





















































































