Уравнение фигуры — это уравнение с двумя переменными x и y, для которого выполняются два условия: 1) координаты любой точки фигуры F удовлетворяют этому уравнению.
Содержание:
- Понятие уравнения фигур
- Уравнение прямой
- Уравнения окружности и сферы
- Пример 2.
- Урок по геометрии по теме: «Уравнение фигуры. Уравнение окружности» презентация к уроку по геометрии (9 класс)
- Скачать:
- Предварительный просмотр:
- Подписи к слайдам:
- Презентация «Уравнение фигуры. Уравнение окружности»
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 📸 Видео
Понятие уравнения фигур
Название этого раздела означает: геометрические фигуры можно задавать уравнениями (некоторые фигуры можно задавать неравенствами).
Известно, что точки плоскости и пространства задаются их координатами, геометрические фигуры могут задаваться уравнениями или неравенствами: — уравнение прямой; — уравнение окружности; — уравнение сферы и т. д.
Говорят, что фигура F задается уравнением в прямоугольных координатах, если точка принадлежит фигуре F тогда и только тогда, когда координаты этой точки удовлетворяют данному уравнению. Это означает, что выполняются два условия:
1. Если точка принадлежит фигуре F, то ее координаты удовлетворяют данному уравнению.
2. Если числа х, у, г удовлетворяют данному уравнению, то точка с такими координатами принадлежит фигуре F.
Второе условие можно выразить иначе: координаты любой точки, не принадлежащей фигуре F, не удовлетворяют данному уравнению.
Например, прямая, перпендикулярная оси Ох и проходящая через точку М(2, 0), на оси Ох задается уравнением х = 2 (рис. 2.461). Действительно, каждая точка, лежащая на этой прямой, имеет одну и ту же координату 2. А любая точка, не лежащая на этой прямой, имеет другое значение координаты х, нежели 2. Ось Оу задается уравнением х = 0.
Аналогично прямая, перпендикулярная оси Оу и проходящая через точку Щ0, 3), имеет уравнение у = 3 (рис. 2.462). Ось Ох имеет уравнение у = 0.
Уравнение прямой
Можно доказать такую теорему.
Теорема 3. Любая прямая в декартовой системе координат хОу имеет уравнение вида — некоторые числа.
Выясним, как расположена прямая относительно осей координат, если ее уравнение имеет тот или иной частный вид.
1. В этом случае уравнение прямой можно переписать так:
Таким образом, все точки прямой имеют одну и ту же ординату ; следовательно, прямая параллельна оси х (рис. 2.463). В частности, если с = 0, то прямая совпадает с осью Ох.
2. Этот случай рассматривается аналогично. Прямая параллельна оси Оу (рис. 2.464) и совпадает с ней, если и с = 0.
3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 2.465).
Если в общем уравнении прямой коэффициент при у не равен нулю, то это уравнение можно разрешить относительно у. Получим: Или, обозначая получим: у = kх + d.
Коэффициент k в уравнении прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью Ох. В уравнении прямой, изображенной на рисунке 2.466, k > 0.
Коэффициент k в уравнении прямой называют угловым коэффициентом прямой.
Уравнения окружности и сферы
Составим уравнение окружности с центром в точке и радиусом R (рис. 2.467).
1. Возьмем произвольную точку А(х, у) на окружности. Расстояние от нее до центра О равно R.
2. Квадрат расстояния от точки А до точки О равен (формула расстояния между точками).
3. Координаты х, у каждой точки А окружности удовлетворяют уравнению
(2, определение окружности).
Получили искомое уравнение. Обратно: любая точка А, координаты которой удовлетворяют уравнению окружности, принадлежит окружности, так как расстояние от нее до точки О равно R. Отсюда следует, что данное уравнение действительно является уравнением окружности с центром в точке О и радиусом R.
Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:
Выведем теперь уравнение сферы. Пусть в пространстве введена прямоугольная система координат и задана сфера S с центром и радиусом R. Эта сфера есть множество точек М, для которых расстояние от А равно R, т. е. AM = R (рис. 2.468).
Пусть х, у, z — координаты точки М. Согласно формуле расстояния между точками в пространстве, предыдущее равенство можно записывать в координатах так:
Это и есть уравнение сферы S с центром и радиусом R, т. е. множество точек, координаты которых удовлетворяют данному уравнению, представляет собой сферу S (рис. 2.468).
Если центр А находится в начале координат, т. е. то уравнение получает простой вид:
Рассмотрим шар с центром и радиусом R (рис. 2.469).
По определению, это множество точек М, для которых , т. е. . Выражая расстояние AM через координаты точки М(х, у, z), получим:
Это неравенство задает шар S с центром и радиусом R, так как оно равносильно неравенству , задающему такой шар по самому его определению.
Если центр шара находится в начале координат, то уравнение шара упрощается и имеет вид:
Два предприятия A и В производят продукцию с одной и той же ценой т за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 руб. на 1 км, а для предприятия В 20 руб. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть разделен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными?
Решение:
1. Выберем систему координат так, чтобы ось Ох проходила через пункты А и В, а ось Оу — через точку А (построение) (рис. 2.470).
2. Пусть N — произвольная точка, — расстояния от точки N до предприятий А и Б (рис. 2.471).
3. При доставке груза из пункта А расходы равны (1,2).
4. При доставке груза из пункта Б расходы равны (1,2).
5. Если для пункта N выгоднее доставлять груз с предприятия А, то откуда , в обратном случае получим (3,4).
6. Таким образом, границей этих двух областей для каждой точки, до которой расходы на перевозку груза из пунктов А и Б равны, будет множество точек плоскости, удовлетворяющих уравнению (5)
7. Выразим через координаты:
(1,2, формула расстояния между точками).
8. Имея в виду равенство из п. 6, получим:
(6,7).
9. Это есть уравнение окружности (рис. 2.472).
Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, — из пункта А.
Пример 2.
Два наблюдаемых пункта находятся в точках Пункт наблюдения О находится на прямой АВ и удален от точки А на расстояние км, а от В на расстояние с км (с > ). Наблюдатель для безопасности должен идти по такому пути, чтобы расстояние от него до пункта А все время оставалось в два раза больше, чем расстояние от него до пункта В. По какой линии должен идти наблюдатель?
Решение:
Из условий задачи имеем:
1. Два наблюдаемых пункта находятся в точках
2. Пункт наблюдения О находится на прямой АВ и удален от А на расстоянии км, а от В — с км (с > ).
3. Наблюдатель идет так, чтобы расстояние до пункта А было в два раза больше, чем до В.
4. По какой линии должен идти наблюдатель?
5. Примем за начало координат наблюдательный пункт О и направление оси Ох будет проходить через пункты А и В (по условию задачи эти три точки находятся на одной прямой) (рис. 2.473).
6. Пусть наблюдатель находится в точке М(х, у). Вычислим расстояние от наблюдателя до пунктов А и В (рис. 2.473):
(1, 2, 3, 5, формула расстояния между точками).
7. По условию задачи имеем: МА = 2MB, т. е.
(3, 6).
8. Решая это уравнение, получим:
9. Раскроем скобки и перегруппируем:
10. Наблюдатель должен идти по окружности с центром и радиусом (4, уравнение окружности).
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Урок по геометрии по теме: «Уравнение фигуры. Уравнение окружности»
презентация к уроку по геометрии (9 класс)
Презентации по геометрии за 9 класс по теме: » Уравнение фигуры. Уравнение окружности»
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
Скачать:
Вложение | Размер |
---|---|
uravnenie_figury.uravnenie_okruzhnosti_9_kl._novaya.pptx | 370.56 КБ |
Предварительный просмотр:
Видео:Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать
Подписи к слайдам:
Уравнение фигуры. Уравнение окружности составила учитель математики Веселова С.М.
1.Как называется геометрическая фигура, состоящая из множества всех точек, равноудаленных от данной точки? 2. Как называется точка равноудаленная от всех точек окружности? O 1. Окружность 2. Центр окружности
3.Как называется хорда, проходящая через центр окружности? O 3. Диаметр B A
4. Как называется отрезок, соединяющий центр окружности с точкой на окружности? O 4. Радиус M r
5.Чему равно расстояние между точками А и В?
Какая фигура является графиком уравнения? С. у = 2х-1 В. у = А. у = Рис. 1 Рис. 2 Рис. 3 А В С 3 1 2
Уравнение у=2х-1 является уравнением прямой т. А (0;-1) и т. В(2;3) лежат на прямой т. С (2;2) не лежит на прямой Уравнением фигуры F, заданной на плоскости xy , называют уравнение с двумя переменными x и y, обладающее следующими свойствами: 1) если точка принадлежит фигуре F, то ее координаты являются решением данного уравнения; 2) любое решение (x; y) данного уравнения является координатами точки, принадлежащей фигуре F.
пример А (2;4) – центр, R = 3, то ( х – 2 ) 2 + ( у – 4 ) 2 = 3 2 ; ( х – 2 ) 2 + ( у – 4 ) 2 = 9 . уравнение окружности
Пример 1: Напишите уравнение окружности (0;0) – центр окружности, R- радиус ( х – а ) 2 + ( у – b ) 2 = R 2 . ( х – 0 ) 2 + ( у – 0 ) 2 = R 2 , х 2 + у 2 = R 2 − уравнение окружности с центром в начале координат. Пример: 2 О (0;0) – центр, R = 5 , тогда х 2 + у 2 = 5 2 ; х 2 + у 2 = 25 . Для того чтобы составить уравнение окружности, нужно: 1) узнать координаты центра; 2) узнать длину радиуса; 3) подставить координаты центра ( а ; b ) и длину радиуса R в уравнение окружности ( х – а ) 2 + ( у – b ) 2 = R 2 .
(Задание выполняется Устно) Уравнение окружности Центр радиус ( x – 3 ) 2 + ( y – 2) 2 = 16 C ( 3; 2) r = 4 ( x – 1 ) 2 + ( y + 2) 2 = 4 C ( 1;-2) r = 2 ( x + 5 ) 2 + ( y – 3) 2 = 25 C ( -5; 3) r = 5 x 2 + ( y + 2) 2 = 2 C ( 0;-2) x 2 + y 2 = 9 C ( 0; 0) r = 3
Уравнение окружности Центр радиус ( x – 1 ) 2 + ( y – 2) 2 = 6 4 C ( 1; 2) r = 8 ( x – 1 ) 2 + ( y + 2) 2 = 0,64 C ( 1;-2) r = 0,8 ( x + 5 ) 2 + y 2 = 1,44 C ( -5; 0) r = 1,2 x 2 + y 2 = 5 C ( 0; 0) ( x + 6) 2 + ( y + 2) 2 = 7 C ( -6;-2)
Решение задач с записью в тетради № 330 ( а,б ), № 332
Что называют уравнением фигуры, заданной на плоскости ху ? Какой вид имеет уравнение окружности с центром в точке (а; b) и радиусом R ? Какой вид имеет уравнение окружности с центром в начале координат и радиусом R ?
П.9 читать, знать все определения и формулы наизусть, № 329, № 331, № 333
Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Презентация «Уравнение фигуры. Уравнение окружности»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Уравнение окружности. Уравнение линии на плоскости. Уравнение фигуры
Повторяем! O x y A(2;4) 1 1 2 2 4 B(1;2) Вывод: если точка принадлежит графику уравнения, то ее координаты удовлетворяют этому уравнению.
Алгебра: По заданному уравнению линии исследовать ее свойства. Геометрия: По геометрическим свойствам линии найти ее уравнение.
Задачи урока: Узнать, что называется уравнением линии, окружности; Понять, как по заданным свойствам окружности найти ее уравнение; Научиться находить уравнение окружности.
УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ Х И У НАЗЫВАЕТСЯ УРАВНЕНИЕМ ЛИНИИ L, ЕСЛИ ЭТОМУ УРАВНЕНИЮ УДОВЛЕТВОРЯЮТ КООРДИНАТЫ ЛЮБОЙ ТОЧКИ ЛИНИИ L И НЕ УДОВЛЕТВОРЯЮТ КООРДИНАТЫ НИКАКОЙ ТОЧКИ, НЕ ЛЕЖАЩЕЙ НА ЭТОЙ ЛИНИИ. Определение:
Уравнением фигуры Ф, заданной на плоскости xy, называют уравнение с двумя переменными x и y, имеющее такие свойства: если точка принадлежит фигуре Ф, то ее координаты являются решением данного уравнения; любое решение (x;y) данного уравнения является координатами точки, принадлежащей фигуре Ф. Определение:
У Х 0 М (х;у) r C (х0;у0) УРАВНЕНИЕ ОКРУЖНОСТИ СМ= (х – х0)2 + (у – у0)2 СМ = r, или СМ2 = r2 r2 = (х – х0)2 + (у – у0)2 Уравнение окружности общего вида
У Х 0 М (х; у) r УРАВНЕНИЕ ОКРУЖНОСТИ (с центром в начале координат) МО= (х – 0)2 + (у – 0)2 r2 = х2 + у 2
Как составить уравнение окружности: — узнать координаты центра; — узнать длину радиуса; подставить координаты центра и длину радиуса в уравнение окружности общего вида.
Например: 1. Центр С (2;4), радиус r = 3; уравнение окружности: (х – 2)2 + (у – 4)2 = 9 2. Центр С (0;0), радиус r = 4; уравнение окружности: х2 + у2 = 16
Решить задачи: Окружность задана уравнением: . Укажите координаты центра окружности и ее радиус. №№ 327, 328, 330, 332 Решить самостоятельно.
Дома: Выучить определения и формулы уравнений; Выполнить упражнения: №№ 329, 331, 333.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 956 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 685 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 314 человек из 70 регионов
Ищем педагогов в команду «Инфоурок»
Видео:УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрияСкачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 569 621 материал в базе
Материал подходит для УМК
«Геометрия», Шарыгин И.Ф.
12.2. Уравнение линии
Другие материалы
- 30.01.2020
- 138
- 0
- 30.01.2020
- 182
- 0
- 30.01.2020
- 114
- 0
- 30.01.2020
- 189
- 1
- 29.01.2020
- 1105
- 15
- 29.01.2020
- 275
- 0
- 25.10.2019
- 1116
- 28
- 24.10.2019
- 395
- 4
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 30.01.2020 999
- PPTX 739 кбайт
- 103 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Булдакова Светлана Валерьяновна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 3 месяца
- Подписчики: 0
- Всего просмотров: 6814
- Всего материалов: 6
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:9 класс, 5 урок, Уравнение линии на плоскостиСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Рособрнадзор не планирует переносить досрочный период ЕГЭ
Время чтения: 0 минут
Объявлен конкурс дизайн-проектов для школьных пространств
Время чтения: 2 минуты
Полный перевод школ на дистанционное обучение не планируется
Время чтения: 1 минута
Тринадцатилетняя школьница из Индии разработала приложение против буллинга
Время чтения: 1 минута
У 76% российских учителей оклад ниже МРОТ
Время чтения: 2 минуты
В России могут объявить Десятилетие науки и технологий
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
📸 Видео
Уравнение окружности (1)Скачать
УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать
Уравнение прямой на плоскостиСкачать
Уравнение линии на плоскости | Геометрия 7-9 класс #89 | ИнфоурокСкачать
9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать
УРАВНЕНИЕ ОКРУЖНОСТИСкачать
УРАВНЕНИЯ ОКРУЖНОСТИ И ПРЯМОЙ 9 класс геометрияСкачать
Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Уравнение окружности. Практика. Урок 7. Геометрия 9 классСкачать
Уравнение прямой. Урок 6. Геометрия 9 классСкачать
Задача на построение фигуры, заданной уравнением, 9-11 класс| Математика TutorOnlineСкачать
Уравнение прямой. Видеоурок 6. Геометрия 9 классСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Уравнение окружностиСкачать