Уравнение это пример или задача

Что такое уравнение: определение, решение, примеры

В данной публикации мы рассмотрим, что такое уравнение, а также, что значит его решить. Представленная теоретическая информация сопровождается практическими примерами для лучшего понимания.

Видео:Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Определение уравнения

Уравнение – это равенство, содержащее неизвестное число, которе требуется найти.

Это число обычно обозначается маленькой латинской буквой (чаще всего – x , y или z ) и называется переменной уравнения.

Другими словами, равенство является уравнением только в том случае, когда содержит букву, значение которой требуется вычислить.

Примеры простейших уравнений (одна неизвестная и одно арифметическое действие):

В более сложных уравнениях переменная может встречаться несколько раз, также, в них могут содержаться скобки и более сложные математические операции. Например:

Также, в уравнении может быть несколько переменных, например:

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Корень уравнения

Допустим, у нас есть уравнение .

Оно обращается в верное равенство при . Это значение (число) и является корнем уравнения.

Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.

Обычно, корень пишется так: . Если корней несколько, они просто перечисляются через запятую, например: , .

Примечания:

1. Некоторые уравнения могут быть не решаемы.

Например: . Какое бы мы число не подставили вместо x , получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.

2. Некоторые уравнения имеют бесконечное множество корней.

Например: . В данном случае решением является любое число, т.е. , , , где N , Z и R – это натуральные, целые и действительные числа, соответственно.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Равносильные уравнения

Уравнения, имеющие одни и те же корни, называются равносильными.

Например: и . У обоих уравнений решением является число два, т.е. .

Основные равносильные преобразования уравнений:

1. Перенос какого-то слагаемого из одной части уравнений в другую с изменением его знака на противоположный.

Например: 3x + 7 = 5 равносильно .

2. Умножение/разделение обеих частей уравнения на одно и то же число, не равное нулю.

Например: 4x – 7 = 17 равносильно .

Уравнение, также, не изменится, если к обеим его частям прибавить/отнять одно и то же число.

3. Приведение подобных слагаемых.

Например: 2x + 5x – 6 + 2 = 14 равносильно .

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Уравнение это пример или задача

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Уравнение это пример или задача

Вернем получившееся равенство Уравнение это пример или задачав первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Уравнение это пример или задача

Пример 4. Рассмотрим равенство Уравнение это пример или задача

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Уравнение это пример или задача

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Уравнение это пример или задача

Видео:Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Уравнение это пример или задача

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Уравнение это пример или задача

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Уравнение это пример или задача

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Уравнение это пример или задача

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Уравнение это пример или задача

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Уравнение это пример или задача

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Уравнение это пример или задача

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Уравнение это пример или задача

Чтобы выразить число 3 мы поступили следующим образом:

Уравнение это пример или задача

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Уравнение это пример или задача

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Уравнение это пример или задача

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Уравнение это пример или задача

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Уравнение это пример или задача

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Уравнение это пример или задачапозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Уравнение это пример или задача

Отсюда Уравнение это пример или задача.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Уравнение это пример или задача

Отсюда Уравнение это пример или задача.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Уравнение это пример или задачатребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Уравнение это пример или задача

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Уравнение это пример или задачавместо числа 15 располагается переменная x

Уравнение это пример или задача

В этом случае переменная x берет на себя роль неизвестного делимого.

Уравнение это пример или задача

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Уравнение это пример или задача. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Уравнение это пример или задачавместо числа 5 располагается переменная x .

Уравнение это пример или задача

В этом случае переменная x берет на себя роль неизвестного делителя.

Уравнение это пример или задача

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Уравнение это пример или задача. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Уравнение это пример или задача

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Уравнение это пример или задача

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Уравнение это пример или задача

Компонентами умножения являются множимое, множитель и произведение

Уравнение это пример или задача

Компонентами деления являются делимое, делитель и частное

Уравнение это пример или задача

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Уравнение это пример или задача

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Уравнение это пример или задача

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Уравнение это пример или задача

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Уравнение это пример или задача

Вычислим правую часть получившегося уравнения:

Уравнение это пример или задача

Мы получили новое уравнение Уравнение это пример или задача. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Уравнение это пример или задача

При этом переменная x является не просто множителем, а неизвестным множителем

Уравнение это пример или задача

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Уравнение это пример или задача

Вычислим правую часть, получим значение переменной x

Уравнение это пример или задача

Для проверки найденный корень отправим в исходное уравнение Уравнение это пример или задачаи подставим вместо x

Уравнение это пример или задача

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Уравнение это пример или задача

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Уравнение это пример или задача

Отсюда x равен 2

Уравнение это пример или задача

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Уравнение это пример или задача

Согласно порядку действий, в первую очередь выполняется умножение:

Уравнение это пример или задача

Подставим корень 2 во второе уравнение 28x = 56

Уравнение это пример или задача

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Уравнение это пример или задача

Вычтем из обеих частей уравнения число 10

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях:

Уравнение это пример или задача

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Уравнение это пример или задача

Отсюда Уравнение это пример или задача.

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 2

Уравнение это пример или задача

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Уравнение это пример или задачамы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Уравнение это пример или задача. Корень этого уравнения, как и уравнения Уравнение это пример или задачатак же равен 2

Уравнение это пример или задача

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Уравнение это пример или задача

Вычтем из обеих частей уравнения число 12

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях уравнения:

Уравнение это пример или задачаВ левой части останется 4x , а в правой части число 4

Уравнение это пример или задача

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Уравнение это пример или задача

Отсюда Уравнение это пример или задача

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Уравнение это пример или задача

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Уравнение это пример или задача

Пример 3. Решить уравнение Уравнение это пример или задача

Раскроем скобки в левой части равенства:

Уравнение это пример или задача

Прибавим к обеим частям уравнения число 8

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях уравнения:

Уравнение это пример или задача

В левой части останется 2x , а в правой части число 9

Уравнение это пример или задача

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Уравнение это пример или задача

Отсюда Уравнение это пример или задача

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 4,5

Уравнение это пример или задача

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Уравнение это пример или задачамы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Уравнение это пример или задача. Корень этого уравнения, как и уравнения Уравнение это пример или задачатак же равен 4,5

Уравнение это пример или задача

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Уравнение это пример или задача

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Уравнение это пример или задача

Получается верное равенство. Значит число 2 действительно является корнем уравнения Уравнение это пример или задача.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Уравнение это пример или задача

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Уравнение это пример или задача

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнение это пример или задача

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Уравнение это пример или задача

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Уравнение это пример или задача

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Уравнение это пример или задача

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Уравнение это пример или задача

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Уравнение это пример или задача

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Уравнение это пример или задача

В результате останется простейшее уравнение

Уравнение это пример или задача

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Уравнение это пример или задача

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 4

Уравнение это пример или задача

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Уравнение это пример или задача. Корень этого уравнения, как и уравнения Уравнение это пример или задачаравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Уравнение это пример или задача, мы умножили обе части на множитель 8 и получили следующую запись:

Уравнение это пример или задача

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Уравнение это пример или задачана множитель 8 желательно переписать следующим образом:

Уравнение это пример или задача

Пример 2. Решить уравнение Уравнение это пример или задача

Умнóжим обе части уравнения на 15

Уравнение это пример или задача

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Уравнение это пример или задача

Перепишем то, что у нас осталось:

Уравнение это пример или задача

Раскроем скобки в правой части уравнения:

Уравнение это пример или задача

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях, получим

Уравнение это пример или задача

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнение это пример или задача

Отсюда Уравнение это пример или задача

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 5

Уравнение это пример или задача

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Уравнение это пример или задачаравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Уравнение это пример или задача

Умнóжим обе части уравнения на 3

Уравнение это пример или задача

В левой части можно сократить две тройки, а правая часть будет равна 18

Уравнение это пример или задача

Останется простейшее уравнение Уравнение это пример или задача. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнение это пример или задача

Отсюда Уравнение это пример или задача

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 9

Уравнение это пример или задача

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Уравнение это пример или задача

Умнóжим обе части уравнения на 6

Уравнение это пример или задача

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Уравнение это пример или задача

Сократим в обеих частях уравнениях то, что можно сократить:

Уравнение это пример или задача

Перепишем то, что у нас осталось:

Уравнение это пример или задача

Раскроем скобки в обеих частях уравнения:

Уравнение это пример или задача

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях:

Уравнение это пример или задача

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Уравнение это пример или задача

Вернемся к исходному уравнению Уравнение это пример или задачаи подставим вместо x найденное значение 4

Уравнение это пример или задача

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Уравнение это пример или задача

Раскроем скобки в обеих частях уравнения там, где это можно:

Уравнение это пример или задача

Умнóжим обе части уравнения на 15

Уравнение это пример или задача

Раскроем скобки в обеих частях уравнения:

Уравнение это пример или задача

Сократим в обеих частях уравнения, то что можно сократить:

Уравнение это пример или задача

Перепишем то, что у нас осталось:

Уравнение это пример или задача

Раскроем скобки там, где это можно:

Уравнение это пример или задача

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Уравнение это пример или задача

Приведем подобные слагаемые в обеих частях уравнения:

Уравнение это пример или задача

Найдём значение x

Уравнение это пример или задача

В получившемся ответе можно выделить целую часть:

Уравнение это пример или задача

Вернемся к исходному уравнению и подставим вместо x найденное значение Уравнение это пример или задача

Уравнение это пример или задача

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Уравнение это пример или задача

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Уравнение это пример или задача

Значение переменной А равно Уравнение это пример или задача. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Уравнение это пример или задача, то уравнение будет решено верно

Уравнение это пример или задача

Видим, что значение переменной B , как и значение переменной A равно Уравнение это пример или задача. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Уравнение это пример или задача

Подставим найденное значение 2 вместо x в исходное уравнение:

Уравнение это пример или задача

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Уравнение это пример или задача

Выполним сокращение в каждом слагаемом:

Уравнение это пример или задача

Перепишем то, что у нас осталось:

Уравнение это пример или задача

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Уравнение это пример или задача

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Уравнение это пример или задача

Этим методом мы тоже будем пользоваться часто.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Уравнение это пример или задача. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Уравнение это пример или задача

Приведем подобные слагаемые:

Уравнение это пример или задача

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Уравнение это пример или задача. Это есть произведение минус единицы и переменной x

Уравнение это пример или задача

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Уравнение это пример или задачана самом деле выглядит следующим образом:

Уравнение это пример или задача

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Уравнение это пример или задача

или разделить обе части уравнения на −1 , что еще проще

Уравнение это пример или задача

Итак, корень уравнения Уравнение это пример или задачаравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Уравнение это пример или задача

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Уравнение это пример или задачана минус единицу:

Уравнение это пример или задача

После раскрытия скобок в левой части образуется выражение Уравнение это пример или задача, а правая часть будет равна 10

Уравнение это пример или задача

Корень этого уравнения, как и уравнения Уравнение это пример или задачаравен 5

Уравнение это пример или задача

Значит уравнения Уравнение это пример или задачаи Уравнение это пример или задачаравносильны.

Пример 2. Решить уравнение Уравнение это пример или задача

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Уравнение это пример или задача. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Уравнение это пример или задачана −1 можно записать подробно следующим образом:

Уравнение это пример или задача

либо можно просто поменять знаки всех компонентов:

Уравнение это пример или задача

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Уравнение это пример или задачана −1 , мы получили уравнение Уравнение это пример или задача. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Уравнение это пример или задача

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Уравнение это пример или задача

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Уравнение это пример или задача

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Уравнение это пример или задача

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Уравнение это пример или задача

Видео:Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Уравнение это пример или задача. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Уравнение это пример или задача

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Уравнение это пример или задача

Приведем подобные слагаемые в левой части:

Уравнение это пример или задача

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Уравнение это пример или задачамы произведение 10 делили на известный сомножитель 2

Уравнение это пример или задача

Но если в уравнении Уравнение это пример или задачаобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнение это пример или задача

Уравнения вида Уравнение это пример или задачамы решали выражая неизвестное слагаемое:

Уравнение это пример или задача

Уравнение это пример или задача

Уравнение это пример или задача

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Уравнение это пример или задачаслагаемое 4 можно перенести в правую часть, изменив знак:

Уравнение это пример или задача

Уравнение это пример или задача

Далее разделить обе части на 2

Уравнение это пример или задача

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Уравнение это пример или задача.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Уравнение это пример или задача

В случае с уравнениями вида Уравнение это пример или задачаудобнее делить произведение на известный сомножитель. Сравним оба решения:

Уравнение это пример или задача

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Уравнение это пример или задача

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Уравнение это пример или задача

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Уравнение это пример или задача

Подставляем по-очереди найденные значения в исходное уравнение Уравнение это пример или задачаи убеждаемся, что при этих значениях левая часть равняется нулю:

Уравнение это пример или задача

Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Уравнение это пример или задача

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Уравнение это пример или задача

Пример 2. Решить уравнение Уравнение это пример или задача

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Пример 65. Решить задачу Коши (диффуры)Скачать

Пример 65. Решить задачу Коши (диффуры)

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Уравнение это пример или задачане имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Уравнение это пример или задача. Тогда уравнение примет следующий вид

Уравнение это пример или задача

Пусть Уравнение это пример или задача

Уравнение это пример или задача

Пример 2. Решить уравнение Уравнение это пример или задача

Раскроем скобки в левой части равенства:

Уравнение это пример или задача

Приведем подобные слагаемые:

Уравнение это пример или задача

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Уравнение это пример или задача

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Уравнение это пример или задача

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Уравнение это пример или задачаопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Уравнение это пример или задачана t

Уравнение это пример или задача

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Уравнение это пример или задача

В получившемся уравнении левую и правую часть поменяем местами:

Уравнение это пример или задача

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Уравнение это пример или задачаопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Уравнение это пример или задача

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Уравнение это пример или задача

В получившемся уравнении v × t = s обе части разделим на v

Уравнение это пример или задача

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Уравнение это пример или задача

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Уравнение это пример или задачапримет следующий вид

Уравнение это пример или задача

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Уравнение это пример или задача

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Уравнение это пример или задача

Затем разделить обе части на 50

Уравнение это пример или задача

Пример 2. Дано буквенное уравнение Уравнение это пример или задача. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Уравнение это пример или задача

Разделим обе части уравнения на b

Уравнение это пример или задача

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Уравнение это пример или задача

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Уравнение это пример или задача. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Уравнение это пример или задача

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Уравнение это пример или задача

В левой части вынесем за скобки множитель x

Уравнение это пример или задача

Разделим обе части на выражение a − b

Уравнение это пример или задача

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Уравнение это пример или задача

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Уравнение это пример или задача

Уравнение это пример или задача

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Уравнение это пример или задача

Пример 4. Дано буквенное уравнение Уравнение это пример или задача. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Уравнение это пример или задача

Умнóжим обе части на a

Уравнение это пример или задача

В левой части x вынесем за скобки

Уравнение это пример или задача

Разделим обе части на выражение (1 − a)

Уравнение это пример или задача

Видео:Урок 14 Решение задач с помощью уравнений (5 класс)Скачать

Урок 14 Решение задач с помощью уравнений (5 класс)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Уравнение это пример или задача

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Уравнение это пример или задачапримет вид Уравнение это пример или задача.
Отсюда Уравнение это пример или задача.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

Решение простых линейных уравнений

Уравнение это пример или задача

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Уравнение это пример или задача

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Уравнение это пример или задача

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Уравнение это пример или задача

  1. Уравнение это пример или задача
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Поделиться или сохранить к себе: