ТИТУЛЬНЫЙ ЛИСТ
1 Теоретические обоснования уравнений эллиптического типа………………. 4
1.1. Задачи приводящие к уравнению Лапласа………………. 5
1.2. Уравнение Шредингера и его стационарный аналог. 9
1.3. Уравнение Гельмгольца……………………………………………. ……10
2 Примеры решения задач на уравнения эллиптического типа……………………12
Список использованных источников……………………………………………. …16
В курсовой работе будут рассмотрены уравнения эллиптического типа.
Актуальность исследования заключается в том, что благодаря данному типу уравнений можно описать стационарные процессы, проходящие в различных физических полях. Например, с помощью уравнения Пуассона можно описать электростатическое поле, поле давления [1].
Исследование затронет следующие проблемы: применение уравнений эллиптического типа на практике и способы их решения.
Целью исследования является: изучение вопроса, касающегося применения уравнений эллиптического типа на практике.
Основными задачами, поставленными для достижения цели можно считать:
— ознакомиться с положениями, характеризующими уравнения эллиптического типа;
— выявить основные уравнения, относящиеся к данному типу;
— освоить навык решения задач, используя данные уравнения;
— показать специфику проблем, которые могут возникнуть на этапах решения.
Объектом исследования заданной темы являются дифференциальные уравнения в частных производных.
Предметом исследования выступают уравнения эллиптического типа.
Теоретической и методологической основой исследования послужили труды отечественных и зарубежных деятелей, методические пособия по дисциплине «методы математической физики».
1. ТЕОРЕТИЧЕСКИЕ ОБОСНОВАНИЯ УРАВНЕНИЙ ЭЛЛИПТИЧЕСКОГО ТИПА
Помимо физических явлений, развивающихся в пространстве и во времени, существует множество процессов, которые не изменяются с течением времени. Эти процессы называются стационарными. При исследовании данных процессов, различной физической природы (колебания, теплопроводность, диффузия и др.) обычно приходят к уравнениям эллиптического типа. Примерами могут выступать:
1. Уравнения Лапласа и Пуассона, описывают различные стационарные физические поля.
2. Стационарный аналог уравнения Шредингера, когда предполагается гармоническая зависимость от времени.
3. Уравнение Гельмгольца.
4. Уравнения, получаемые из уравнения Максвелла, если предполагается, что электромагнитное поле не изменяется с течением времени [1].
Наиболее распространенным уравнением этого типа является уравнение Лапласа

Этим уравнением характеризуется гравитационный и электростатический потенциалы в точках свободного пространства, оно описывает потенциал скорости безвихревого потока несжимаемой жидкости, и оно же справедливо для температуры однородной изотропной среды при установившемся движении тепла.
Функция 

При изучении свойств гармонических функций были разработанные различные математические методы, оказавшиеся плодотворными и в применении к уравнениями гиперболического и параболического типов [1].
1.1. ЗАДАЧИ ПРИВОДЯЩИЕ К УРАВНЕНИЮ ЛАПЛАСА
1. Стационарное тепловое поле. Постановка краевых задач.
Рассматривается стационарное тепловое поле. Температура нестационарного теплового может быть представлена дифференциальным уравнением теплопроводности
Если процесс стационарен, то устанавливается распределение температуры 
![]() | (1) |
При наличии источников тепла получается уравнение
![]() | (2) |
где 

Рассматривается некоторый объем 



Найти функцию 
, | (3) |
и граничному условию, которое может быть взято в одном из следующих видов:
I. 

II. 

III. 

где 




Первую краевую задачу называют для уравнений Лапласа часто называют задачей Дирехле, а вторую задачу – задачей Неймана.
Если ищется решение в области 

2. Потенциальное течение жидкости. Потенциал стационарного тока и электростатического поля.
В качестве второго примера будет рассмотрено потенциальное течение жидкости без источников. Пусть внутри некоторого объема 




![]() | (4) |
где 
. | (5) |
При подстановке сюда выражения (3) для υ, выходит:

, | (6) |
то есть потенциал скорости удовлетворяет уравнению Лапласа.
Пусть в однородной проводящей среде имеется стационарный ток с объемной плотностью 
. | (7) |
Электрическое поле 
![]() | (8) |
где 
Поскольку процесс стационарный, то электрическое поле является безвихревым или потенциальным, т.е. существует такая скалярная функция 
). | (9) |
Отсюда на основании формул (6) и (7) заключается, что
, | (10) |
т.е. потенциал электрического поля стационарного тока удовлетворяет уравнению Лапласа.
Рассматривается электрическое поле стационарных зарядов. Из стационарности процесса следует, что
, | (11) |
т.е. поле является потенциальным и
. |
Пусть 

Исходя из основного закона электродинамики
![]() | (12) |
где 



![]() | (13) |

При подстановке сюда выражение (8) для 
, | (14) |
т.е. электростатический потенциал 


Нами был рассмотрен ряд процессов. Основные краевые задачи для которых относятся к трем типам, приведенным выше [1].
1.2. УРАВНЕНИЕ ШРЕДИНГЕРА И ЕГО СТАЦИОНАРНЫЙ АНАЛОГ
В квантовой механике состояние частицы описывается волновой функцией 


где 


Уравнение Шредингера является уравнением в частных производных второго порядка по координатам, но первого порядка по времени. В отличие от волнового уравнения, чтобы выделить частное решение из общего, надо задавать при 
Если искать решение в виде стационарных состояний 

![]() | (15) |
Требуется найти не только решение 

1.3 УРАВНЕНИЕ ГЕЛЬМГОЛЬЦА
Эллиптическое дифференциальное уравнение в частных производных, получаемое из уравнение Максвелла, если предполагается, что электромагнитное поле либо не меняется с течением времени, либо меняется по гармоническому закону. Может быть представлено как
где 



В уравнение Гельмгольца не входят операторы дифференцирования по времени, следовательно, сведение исходной задачи в частных производных к уравнению Гельмгольца может упростить её решение. Для примера рассматривается волновое уравнение:
![]() | (16) |
Пусть функции 




![]() | (17) |
где 

Решение уравнения Гельмгольца зависит от вида граничных условий. В двумерном случае уравнение Гельмгольца применяется для решения задачи о колеблющейся мембране, тогда естественным образом задаются однородные граничные условия, что физически соответствует закреплению мембраны на границе. В таком случае решение будет зависеть от формы мембраны. Так, для круглой мембраны радиуса 

![]() | (18) |
Метод разделения переменных позволяет перейти к задаче на собственные значения для части решения, зависящей только от 
![]() | (19) |
![]() | (20) |
а функция, зависящая только от радиуса, будет удовлетворять уравнению:
![]() | (21) |
Фундаментальными решениями этих уравнений являются, соответственно, функции 

2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО ТИПА
В отличие от смешанных задач, для эллиптических уравнений ставится только краевая задача
где 

При этом, если 


Задачи буду решаться в полярных или сферических координатах. Заданные краевые условия произвольные, неоднородные. Однородные краевые условия для нахождения собственных функций возникают из-за того, что области имеют специальный вид, а потому решение должно иметь период 


Предлагаю рассмотреть метод нахождения решения уравнения Лапласа 


где 
Задача № 1. Решить краевую задачу для уравнения 


Решение: Уравнение Лапласа в полярных координатах 
![]() | (22) |
1. Частное решение уравнения в соответствии с методом Фурье ищется в виде
причем 

При подстановке 
Поэтому функции 

a)
b)
2. Решается задача
Общее решение уравнения 
![]() | (23) |
где 

Это решение периодично при 

Если
Если
3. Решается задача
Если 

Если 
Общее решение этого уравнения
Так как
4. Вспомогательные решения имеют вид:
5. Тогда решение исходной задачи ищется в виде
6. При использовании граничного условия 
получается 

Ответ:
Задача № 2. Решить краевую задачу
Решение: Проводятся преобразования, аналогичные предыдущей задачи до момента нахождения коэффициентов 
Нужно представить граничное условие в виде
Следовательно,
Далее предлагаю рассмотреть примеры решения краевых задач уравнения Гельмгольца.
Задача № 3. Решить краевую задачу для уравнения Гельмгольца в круге
(здесь 


Решение: Используя метод разделения переменных (метод Фурье). Полагая, 
где 
Собственные значения и собственные функции определяются как решения данной задачи:
Выходит
то для определения 
![]() | (24) |
Обозначив 
Это уравнение Бесселя порядка 
где 



Значит, решение уравнения (1) имеет вид
Поскольку 


![]() | (25) |
Постоянные 

В частности, при 
и в этом случае решение имеет вид
В проделанной нами работе, мы акцентировали внимание на такой теме как «Уравнения эллиптического типа». В ходе нашего исследования мы сумели выполнить поставленные перед нами задачи, что повлекло за собой достижение цели работы. Изучив теоретические материалы, мы разобрались с основными уравнениями, научились выводить их и применять в решениях задач. Были обозначены проблемы и пути их решения. В качестве примера выступили три задачи, требующие решение эллиптического уравнения.
Материалом данного исследования выступали труды советских и российских деятелей, содержащие в себе подробную информацию, касающуюся нашей проблемы.
В ходе выполнения данной работы появилась возможность оценить важность заданной темы в современной науке, определить основные задачи, которые можно решать с помощью уравнений эллиптического типа.
Подводя итог, хочется отметить, что изучение данного вопроса способствовала возникновению большого интереса, что позволило с энтузиазмом продолжать с ознакомлением трудов знаменитых авторов для дальнейшего анализа и использования в работе.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1.А.Н. Тихонов, А.А. Самарский, Уравнения математической физики М., издательство «наука», 1977. – 735 с.
2. Л.Д. Ландау, Е. М. Лифшиц, Квантовая механика,
М., Изд. 4е, «Наука», 1989. – 767 с.
3. Д.А. Шапиро, Конспект лекций по методам математической физики ч.1, кафедра теоретической физики НГУ, 2004. – 123 с.
4. В. С. Владимиров, В. В. Жаринов, Уравнения математической физики. — М.: «Физматлит», 2004. – 400 с.
5. С.И. Колесникова, Методы решения основных задач уравнений математической физики, М., МФТИ, 2015. – 80 с.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

Численные методы решения уравнений эллиптического типа
Введение
Наиболее распространённым уравнением эллиптического типа является уравнение Пуассона.
К решению этого уравнения сводятся многие задачи математической физики, например задачи о стационарном распределении температуры в твердом теле, задачи диффузии, задачи о распределении электростатического поля в непроводящей среде при наличии электрических зарядов и многие другие.
Для решения эллиптических уравнений в случае нескольких измерений используют численные методы, позволяющие преобразовать дифференциальные уравнения или их системы в системы алгебраических уравнений. Точность решения определяется шагом координатной сетки, количеством итераций и разрядной сеткой компьютера [1]
Цель публикации получить решение уравнения Пуассона для граничных условий Дирихле и Неймана, исследовать сходимость релаксационного метода решения на примерах.
Уравнение Пуассона относится к уравнениям эллиптического типа и в одномерном случае имеет вид [1]:

где x – координата; u(x) – искомая функция; A(x), f(x) – некоторые непрерывные функции координаты.
Решим одномерное уравнение Пуассона для случая А = 1, которое при этом принимает вид:

Зададим на отрезке [xmin, xmax] равномерную координатную сетку с шагом ∆х:

Граничные условия первого рода (условия Дирихле) для рассматриваемой задачи могут быть представлены в виде:

где х1, xn – координаты граничных точек области [xmin, xmax]; g1, g2 – некоторые
константы.
Граничные условия второго рода (условия Неймана) для рассматриваемой задачи могут быть представлены в виде:

Проводя дискретизацию граничных условий Дирихле на равномерной координатной сетке (3) с использованием метода конечных разностей, получим:

где u1, un – значения функции u(x) в точках x1, xn соответственно.
Проводя дискретизацию граничных условий Неймана на сетке (3), получим:

Проводя дискретизацию уравнения (2) для внутренних точек сетки, получим:

где ui, fi – значения функций u(x), f(x) в точке сетки с координатой xi.
Таким образом, в результате дискретизации получим систему линейных алгебраических уравнений размерностью n, содержащую n – 2 уравнения вида (8) для внутренних точек области и уравнения (6) и (7) для двух граничных точек [1].
Ниже приведен листинг на Python численного решения уравнения (2) с граничными условиями (4) – (5) на координатной сетке (3).
Разработанная мною на Python программа удобна для анализа граничных условий.Приведенный алгоритм решения на Python использует функцию Numpy — u=linalg.solve(a,b.T).T для решения системы алгебраических уравнений, что повышает быстродействие при квадратной матрице . Однако при росте числа измерений необходимо переходить к использованию трех диагональной матрицы решение для которой усложняется даже для очень простой задачи, вот нашёл на форуме такой пример:
Программа численного решения на равномерной по каждому направлению сетки задачи Дирихле для уравнения конвекции-диффузии

Используем аппроксимации центральными разностями для конвективного слагаемого и итерационный метод релаксации.для зависимость скорости сходимости от параметра релаксации при численном решении задачи с /(х) = 1 и 6(х) = 0,10. В сеточной задаче:

Представим матрицу А в виде суммы диагональной, нижней треугольной и верхней треугольных матриц:

Метод релаксации соответствует использованию итерационного метода:

При 

На графике показана зависимость числа итераций от параметра релаксации для уравнения Пуассона (b(х) = 0) и уравнения конвекции-диффузии (b(х) = 10). Для сеточного уравнения Пуассона оптимальное значении параметра релаксации находится аналитически, а итерационный метод сходиться при 
- Приведено решение эллиптической задачи на Python с гибкой системой установки граничных условий
- Показано что метод релаксации имеет оптимальный диапазон (
) параметра релаксации.
Ссылки:
- Рындин Е.А. Методы решения задач математической физики. – Таганрог:
Изд-во ТРТУ, 2003. – 120 с. - Вабищевич П.Н.Численные методы: Вычислительный практикум. — М.: Книжный дом
«ЛИБРОКОМ», 2010. — 320 с.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения

и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения 
· если 
· если 
· если 
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение 



II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты 
2. Вычислить выражение 
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения 
4. Записать уравнение характеристик:

5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· 
в случае уравнения гиперболического типа;
· 
в случае уравнения параболического типа;
· 
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные 

· в случае уравнения гиперболического типа в качестве 

· в случае уравнения параболического типа в качестве 





· в случае уравнения эллиптического типа в качестве 

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:





8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: 



б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при 
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:


б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных 
а в качестве 


7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при 
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения

и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: 
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при 

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.










Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

где 





Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

В уравнении (16) приравняем к нулю коэффициенты при 
Откуда 


где 
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты 
10. Вычислим выражение 

11. 
12. Запишем уравнение характеристик:

5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: 

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:

Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

В уравнении (21) приравняем к нулю коэффициенты при 
Откуда 


Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

где 
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.










📸 Видео
Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Видеоурок "Канонические уравнения прямой"Скачать

2. Приведение уравнений второго порядка к каноническому видуСкачать

Поверхности второго порядкаСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать

53. Приведение общего уравнения кривой к каноническому видуСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Видеоурок "Приведение к каноническому виду"Скачать

Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Эллиптические уравнения. ТеорияСкачать

Приводим диффур в частных производных к каноническому виду | УМФ (УрЧП) | КАК РЕШАТЬ?Скачать



,
.
,
.
).
,
.

,



















































































































