- Что такое клеточное дыхание
- гликолиз
- Цикл Кребса
- Электронная транспортная цепь
- Аэробное дыхание
- Цикл трикарбоновых кислот
- Строение хлоропласта
- Окислительное фосфорилирование
- Анаэробное дыхание
- Общее уравнение дыхания, баланс АТФ
- Что такое дыхание
- Окислительное фосфорилирование
- Анаэробное дыхание
- Фотосинтез и хемосинтез
- Клеточное дыхание – определение, уравнение и этапы
- Определение клеточного дыхания
- Обзор клеточного дыхания
- Уравнение клеточного дыхания
- Уравнение аэробного дыхания
- Уравнение брожения молочной кислоты
- Уравнение алкогольного брожения
- Клеточные шаги дыхания
- Шаг 1
- Шаг 2
- Шаг 3
- Продукты клеточного дыхания
- Углекислый газ
- Другие продукты
- Цель клеточного дыхания
- Типы клеточного дыхания
- Аэробного дыхания
- Ферментация
- Метаногенез
- Уравнение дыхания на примере глюкозы
- Переходный этап между гликолизом и циклом Кребса
- Цикл Кребса
- 🔥 Видео
Видео:Клеточное дыхание. Синтез АТФ в митохондриях.Скачать
Что такое клеточное дыхание
Клеточное дыхание — это процесс, посредством которого биохимическая энергия превращается в энергию в АТФ. Это универсальный процесс, наблюдаемый во всех организмах, живущих на земле. Это устраняет углекислый газ и воду как отходы. Углеводы, белки и жиры сначала превращаются в глюкозу, а затем используются в клеточном дыхании. АТФ служит основной валютой клеточной энергии. Клеточное дыхание происходит в три этапа: гликолиз, цикл Кребса и цепь переноса электронов.
гликолиз
Первым этапом клеточного дыхания является гликолиз, при котором глюкоза (С6) расщепляется на две молекулы пирувата (С3). Это происходит в цитоплазме.
Цикл Кребса
Второй этап клеточного дыхания — цикл Кребса. Другими названиями цикла Кребса являются цикл лимонной кислоты и цикл ТСА. Это происходит внутри митохондриальной матрицы у эукариот. Следовательно, две молекулы пирувата импортируются в митохондрии. У прокариот это происходит в самой цитоплазме. Затем пируват подвергается окислительному декарбоксилированию с образованием ацетил-КоА, который, в свою очередь, соединяется с оксалоацетатом (С4), образуя цитрат (С6). Наконец, весь ацетил-КоА превращается в углекислый газ, 6NADH, 2FADH2и 2ATP.
Электронная транспортная цепь
Третьим этапом клеточного дыхания является цепь транспорта электронов. Окислительное фосфорилирование является механизмом цепи переноса электронов, и ферменты в митохондриальных кристах управляют этим. Это помогает в производстве 30 АТФ путем окисления NADH и FADH2, Процесс полного клеточного дыхания показан на Рисунок 1.
Рисунок 1: Клеточное дыхание
Видео:Анаэробное и аэробное дыхание. 9 класс.Скачать
Аэробное дыхание
Различные этапы клеточного дыхания у аэробных эукариот происходят
в цитоплазме – гликолиз,
в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,
на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.
На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.
Суммарные реакции аэробного дыхания выглядит следующим образом.
Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ
Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.
Видео:Аэробный и анаэробный гликолиз. Реакции катаболизма глюкозы. Расчет выхода АТФ в гликолизеСкачать
Цикл трикарбоновых кислот
Основная статья: Цикл трикарбоновых кислот
Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поступает в цикл трикарбоновых кислот (цикл Кребса). В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.
Суммарное уравнение реакций:
Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2
У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.
Видео:[биохимия] — ГЛИКОЛИЗСкачать
Строение хлоропласта
Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.
Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.
Внутренняя среда хлоропласта называется «строма». В ней находятся тилакоиды и ламеллы.
Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.
Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.
В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.
Видео:Гликолиз (видео 5) | Клеточное дыхание| БиологияСкачать
Окислительное фосфорилирование
Основные статьи: Окислительное фосфорилирование, Дыхательная электронтранспортная цепь и АТФ-синтаза
Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН2 — 1.5 молекулы.
Конечным акцептором электрона в дыхательной цепи аэробов является кислород.
Анаэробное дыхание
Основная статья: Анаэробное дыхание
Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо, нитрат- или сульфат-анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям, которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа. Денитрификация — один из типов анаэробного дыхания — является одним из источников парниковых газов, железобактерии принимают участие в образовании железомарганцевых конкреций. Среди эукариот анаэробное дыхание встречается у некоторых грибов, морских донных беспозвоночных, паразитических червей и протистов — например, фораминифер .
Видео:Энергетический обмен, гликолизСкачать
Общее уравнение дыхания, баланс АТФ
Стадия | Выход кофермента | Выход АТФ (ГТФ) | Способ получения АТФ |
---|---|---|---|
Первая фаза гликолиза | −2 | Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы. | |
Вторая фаза гликолиза | 4 | Субстратное фосфорилирование | |
2 НАДН | 3 (5) | Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ. | |
Декарбоксилирование пирувата | 2 НАДН | 5 | Окислительное фосфорилирование |
Цикл Кребса | 2 | Субстратное фосфорилирование | |
6 НАДН | 15 | Окислительное фосфорилирование | |
2 ФАДН2 | 3 | Окислительное фосфорилирование | |
Общий выход | 30 (32) АТФ | При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов. |
Видео:Цикл Кребса/Цикл лимонной кислоты (видео 7) | Клеточное дыхание | БиологияСкачать
Что такое дыхание
Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.
Необходимая растению энергия содержится в химических связях сложных органических веществ. Изначально это энергия солнца, запасённая в сложных молекулах путём фотосинтеза.
Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.
Рис. 1. Схема дыхания растений.
Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.
Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.
Это же справедливо и для растения в целом.
Таким образом, дыхание включает два процесса:
- клеточное дыхание;
- газообмен растения с внешней средой.
Видео:Задача 27. Энергетический обмен, АТФ, Гликолиз и глюкозаСкачать
Окислительное фосфорилирование
Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 — 1.5 молекулы.
Конечным акцептором электрона в дыхательной цепи аэробов является кислород .
Анаэробное дыхание
Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо , нитрат — или сульфат -анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям , которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа.
Повторите особенности строения митохондрий, которые вы изучали в предыдущей теме. в клетках каких организмов имеются митохондрии? Для чего они нужны? Из курса химии вспомните, что такое окисление.
Что такое клеточное дыхание
Клеточное дыхание — это совокупность реакций окисления органических веществ кислородом, которые происходят в клетках живых организмов. Оно обеспечивает клетку энергией.
Следует отметить, что клеточное дыхание и легочное дыхание — это не одно и то же. Легочное дыхание — это физиологический процесс, в результате которого определенные газы попадают из воздуха в кровь или из крови в воздух. А клеточное дыхание — это биохимический процесс, совокупность химических реакций в клетках.
Клеточное дыхание состоит из двух этапов. Первый из них (гликолиз) происходит в цитозоле, а второй (кислородный) — в митохондриях. У растений во время клеточного дыхания окисляются органические вещества, синтезированные самим растением, у животных и грибов — вещества, которые организм получает с питанием или которые синтезирует сам.
Биохимические процессы клеточного дыхания
Общая формула биологического окисления выглядит так:
В результате первого этапа этого процесса (гликолиза), который происходит в цитозоле, образуется пируват (пировиноградная кислота). Он транспортируется из цитозоля в матрикс митохондрий, где с помощью ферментов окисляется до углекислого газа и воды. Окисление происходит в несколько этапов, на каждом из которых выделяется энергия. Часть энергии выделяется в виде тепла (45 %), а 55 % запасается в АТФ.
Эффективность клеточного дыхания
Ключевым этапом клеточного дыхания является цикл Кребса (цикл трикарбоновых кислот). Именно в реакциях этого цикла образуются соединения, которые являются источником протонов и электронов для процесса окисления. Клеточное дыхание является чрезвычайно эффективным процессом. Еще на первом этапе клеточного дыхания — гликолизе — из одной молекулы глюкозы клетка получает две молекулы АТФ, а на последующих этапах клеточного дыхания к ним добавляются еще 36 молекул (рис. 15.1).
Клеточное дыхание — это биохимический процесс, который происходит в митохондриях. в ходе этого процесса органические вещества, образовавшиеся при гликолизе, окисляются кислородом, который поступает в клетки из окружающей среды. Часть энергии, которая при этом выделяется, запасается клетками в виде молекул АТФ.
Проверьте свои знания
1. Что такое клеточное дыхание? 2. Где происходит клеточное дыхание? 3. Какие биохимические процессы происходят во время клеточного дыхания? 4*. Сравните процессы клеточного дыхания и обычного горения. Найдите черты сходства и отличия.
Это материал учебника
Видео:Синтез АТФ. Клеточное дыхание 2.3.Скачать
Фотосинтез и хемосинтез
Фотосинтез — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.
Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений
Обычно все организмы, способные из неорганических веществ синтезировать органические, т.е. организмы, способные к фотосинтезу и хемосинтезу, относят к автотрофам.
К автотрофам традиционно относят растения и некоторые микроорганизмы.
Кратко мы говорили о фотосинтезе в ходе рассматрения строения растительной клетки, давайте разберем весь процесс поподробнее…
Основное вещество, участвующее в многоступенчатом процессе фотосинтеза — хлорофилл. Именно оно трансформирует солнечную энергию в химическую.
На рисунке указано схематическое изображение молекулы хлорофилла, кстати, молекула очень похожа на молекулу гемоглобина…
Хлорофилл встроен в граны хлоропластов:
Световая фаза фотосинтеза:
(осуществляется на мембранах тилакойдов)
- Свет, попав на молекулу хлорофилла, поглощается им и приводит его в возбужденное состояние — электрон, входящий в состав молекулы, поглотив энергию света, переходит на более высокий энергетический уровень и участвует в процессах синтеза;
- Под действием света так же происходит расщепление (фотолиз) воды:
Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре»
2Н+ + 2е— + НАДФ → НАДФ·Н2
НАДФ — это специфическое вещество, кофермент, т.е. катализатор, в данном случае — переносчик водорода.
синтезируется АТФ (энергия)
Темновая фаза фотосинтеза
(протекает в стромах хлоропластов)
собственно синтез глюкозы
происходит цикл реакций, в которых образуется С6H12O6. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; rроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды
Обратите внимание: темновой эта фаза называется не потому что идет ночью — синтез глюкозы происходит, в общем-то, круглосуточно, но для темновой фазы уже не нужна световая энергия. “Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”. “Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”
“Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”.
В результате фотосинтеза на Земле образуется около 150 млрд т органического вещества и выделяется около 200 млрд т свободного кислорода в год.
Кроме того, растения вовлекают в круговорот миллиарды тонн азота, фосфора, серы, кальция, магния, калия и других элементов.
Хотя зеленый лист использует лишь 1-2% падающего на него света, создаваемые растением органические вещества и кислород в целом обеспечивают существование всего живого на Земле.
Хемосинтез осуществляется за счет энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: водорода, сероводорода, аммиака, оксида железа (II) и др.
Соответственно веществам, включенным в метаболизм бактерий, существуют:
- серобактерии — микроорганизмы водоемов, содержащих H2S — источники с очень характерным запахом,
- железобактерии,
- нитрифицирующие бактерии — окисляют аммиак и азотистую кислоту,
- азотфиксирующие бактерии — обогащают почвы, чрезвычайно повышают урожайность,
- водородокисляющие бактерии
Но суть остается та же — это тоже автотрофное питание , так же запасается энергия и это запас в виде молекул АТФ.
Этот тип синтеза используется ТОЛЬКО бактериями.
Хемосинтетики — единственные организмы на земле, не зависящие от энергии солнечного света.
Поэтому бактерии, «практикующие» хемосинтез, могут жить на любой глубине океанов.
По современным оценкам, биомасса «подземной биосферы», которая находится, в частности, под морским дном и включает хемосинтезирующих анаэробных архебактерий, может превышать биомассу остальной биосферы
Изучением фотосинтеза и хемосинтеза занимался С. Н. Виноградский — ученый, который рассматривал влияние микроорганизмов на биосферу (он ввел понятие «экология микроорганизмов»).
Как видите, фотосинтез и хемосинтез — две формы пластического обмена, при котором из неорганических веществ образуются органические вещества.
- примеры воспросов ЕГЭ по теме
- вопросы ОГЭ
Видео:Энергетический обмен: понятно и подробно | Биология ЕГЭСкачать
Клеточное дыхание – определение, уравнение и этапы
Видео:Стадии гликолиза (видео 6) | Клеточное дыхание| БиологияСкачать
Определение клеточного дыхания
Клеточное дыхание – это процесс, посредством которого клетки превращают сахара в энергию. Чтобы создать АТФ и другие виды энергии для клеточных реакций, клеткам требуется топливо и акцептор электронов, который превращает химический процесс превращения энергии в полезную форму.
Видео:Клеточное дыхание. Лекция 1. Часть 2. Гликолиз и брожениеСкачать
Обзор клеточного дыхания
эукариоты включая все многоклеточный организмы и некоторые одноклеточные организмы, использование аэробного дыхания производить энергию. Аэробного дыхания использует кислород – самый мощный акцептор электронов, доступный в природе.
Аэробного дыхания Этот чрезвычайно эффективный процесс позволяет эукариотам иметь сложные жизненные функции и активный образ жизни. Однако это также означает, что им требуется постоянный запас кислорода, иначе они не смогут получить энергию, чтобы остаться в живых.
Прокариотические организмы, такие как бактерии а также архебактерии можешь использовать другие формы дыхания, которые несколько менее эффективны. Это позволяет им жить в среде, где эукариотические организмы не могут, потому что они не требуют кислорода.
Примеры различных путей расщепления сахара организмами приведены ниже:
Более подробные статьи по аэробному дыханию и анаэробное дыхание можно найти на этом сайте. Здесь мы дадим обзор различных типов клеточного дыхания.
Видео:Окислительное фосфорилирование (видео 10) | Клеточное дыхание | БиологияСкачать
Уравнение клеточного дыхания
Уравнение аэробного дыхания
Уравнение аэробного дыхания показывает, что глюкоза соединяется с кислородом и АДФ с образованием углекислого газа, воды и АТФ:
C6H12O6 (глюкоза) + 6O2 + 36 АДФ (обедненная АТФ) + 36 Pi (фосфатные группы) → 6CO2 + 6H2O + 36 АТФ
Вы можете видеть, что, как только он полностью разрушен, молекулы углерода глюкозы выдыхаются как шесть молекул углекислого газа.
Уравнение брожения молочной кислоты
В молочной кислоте ферментация, один молекула глюкозы расщепляется на две молекулы молочной кислоты. Химическая энергия, которая хранилась в разорванных глюкозных связях, перемещается в связи между ADP и фосфатная группа.
C6H12O6 (глюкоза) + 2 АДФ (обедненная АТФ) + 2 Pi (фосфатные группы) → 2 CH3CHOHCOOH (молочная кислота) + 2 АТФ
Уравнение алкогольного брожения
Алкогольная ферментация похожа на ферментацию молочной кислоты тем, что кислород не является конечным акцептором электронов. Здесь вместо кислорода клетка использует преобразованную форму пируват принять последние электроны. Это создает этиловый спирт, который содержится в алкогольных напитках. Пивовары и дистилляторы используют дрожжевые клетки для создания этого спирта, который очень хорош в этой форме брожения.
C6H12O6 (глюкоза) + 2 АДФ (обедненный АТФ) + 2 Pi (фосфатные группы) → 2 C2H5OH (этиловый спирт) + 2 СО2 + 2 АТФ
Видео:Решение задач на энергетический обмен.Скачать
Клеточные шаги дыхания
Шаг 1
гликолиз это единственный шаг, который разделяют все виды дыхания. При гликолизе молекула сахара, такая как глюкоза, расщепляется пополам, образуя две молекулы АТФ.
Уравнение для гликолиза имеет вид:
C6H12O6 (глюкоза) + 2 NAD + + 2 АДФ + 2 Pi → 2 CH3COCOO- + 2 NADH + 2 АТФ + 2 H2O + 2H +
Название «гликолиз» происходит от греческого «глико» для «сахара» и «лизис» для «расщепления». Это может помочь вам вспомнить, что гликолиз это процесс расщепления сахара.
В большинстве путей гликолиз начинается с глюкозы, которая затем расщепляется на две молекулы пировиноградной кислоты. Эти две молекулы пировиноградной кислоты затем подвергаются дальнейшей обработке с образованием различных конечных продуктов, таких как этиловый спирт или молочная кислота.
Шаг 2
Сокращение – следующая часть процесса. В химическом смысле «уменьшить» молекулу означает добавить к ней электроны.
В случае ферментации молочной кислоты NADH отдает электрон пировиноградной кислоте, что приводит к конечным продуктам молочной кислоты и NAD +. Это полезно для клетки, потому что NAD + необходим для гликолиза. В случае спиртового брожения пировиноградная кислота подвергается дополнительной стадии, на которой она теряет атом углерода в форме CO2. Полученная промежуточная молекула, называемая ацетальдегидом, затем восстанавливается с образованием НАД + плюс этиловый спирт.
Шаг 3
Видео:Дыхательная цепьСкачать
Продукты клеточного дыхания
Основным продуктом любого клеточного дыхания является молекула аденозинтрифосфат (АТФ), Эта молекула хранит энергию, выделяемую во время дыхания, и позволяет клетке передавать эту энергию различным частям клетки. АТФ используется рядом клеточных компонентов в качестве источника энергии. Например, ферменту может потребоваться энергия от АТФ для объединения двух молекул. АТФ также обычно используется на транспортерах, которые являются белками, которые функционируют, чтобы перемещать молекулы через клеточная мембрана.
Углекислый газ
Углекислый газ – универсальный продукт, созданный клеточным дыханием. Как правило, углекислый газ считается отходом и должен быть удален. В водной решение диоксид углерода создает кислые ионы. Это может резко снизить рН клетки и в конечном итоге приведет к прекращению нормальных клеточных функций. Чтобы избежать этого, клетки должны активно вытеснять углекислый газ.
Другие продукты
В то время как АТФ и углекислый газ регулярно вырабатываются всеми формами клеточного дыхания, различные типы дыхания полагаются на разные молекулы, чтобы быть конечными акцепторами электронов, используемых в процессе.
Видео:Тема 21. Клеточное дыхание. БрожениеСкачать
Цель клеточного дыхания
Все клетки должны иметь возможность получать и транспортировать энергию для обеспечения жизненных функций. Чтобы клетки продолжали жить, они должны иметь возможность управлять основными механизмами, такими как насосы в клеточных мембранах, которые поддерживают внутреннюю среду клетки таким образом, чтобы она подходила для жизни.
Наиболее распространенной «энергетической валютой» клеток является АТФ – молекула, которая накапливает много энергии в своих фосфатных связях. Эти связи могут быть разорваны, чтобы высвободить эту энергию и вызвать изменения в других молекулах, таких как те, которые необходимы для питания клеточных мембранных насосов.
Поскольку АТФ нестабилен в течение длительных периодов времени, он не используется для длительного хранения энергии. Вместо этого сахара и жиры используются в качестве долгосрочной формы хранения, и клетки должны постоянно обрабатывать эти молекулы, чтобы произвести новый АТФ. Это процесс дыхания.
Процесс аэробного дыхания вырабатывает огромное количество АТФ из каждой молекулы сахара. На самом деле, каждая молекула сахара переваривается растение или клетка животного дает 36 молекул АТФ! Для сравнения, ферментация обычно производит только 2-4 молекулы АТФ.
Анаэробное дыхание процессы, используемые бактериями и архебактериями, дают меньшее количество АТФ, но они могут происходить без кислорода. Ниже мы обсудим, как различные типы клеточного дыхания производят АТФ.
Видео:Обзор процессов клеточного дыхания (видео 4) | Клеточное дыхание | БиологияСкачать
Типы клеточного дыхания
Аэробного дыхания
Эукариотические организмы выполняют клеточное дыхание в своих митохондрии – органеллы, которые предназначены для расщепления сахара и очень эффективного производства АТФ. Митохондрии часто называют «электростанцией клетки», потому что они способны вырабатывать так много АТФ!
Аэробное дыхание настолько эффективно, потому что кислород – самый мощный акцептор электронов, найденный в природе. Кислород «любит» электроны – и его любовь к электронам «вытягивает» их через цепь переноса электронов в митохондриях.
Специализированный анатомия митохондрий, которые объединяют все необходимые реагенты для клеточного дыхания в небольшом мембранном пространстве внутри клетки, также способствует высокой эффективности аэробного дыхания.
В отсутствие кислорода большинство эукариотических клеток могут также выполнять различные виды анаэробного дыхания, такие как ферментация молочной кислоты. Однако эти процессы не дают достаточного количества АТФ для поддержания жизнедеятельности клетки, и без кислорода клетки в конечном итоге погибают или перестают функционировать.
Ферментация
Ферментация – это название, данное многим различным типам анаэробного дыхания, которые выполняются различными вид бактерий и архебактерий, а также некоторыми эукариотическими клетками в отсутствие кислорода.
Эти процессы могут использовать различные акцепторы электронов и производить различные побочные продукты. Несколько видов брожения:
- Алкогольная ферментация – Этот тип ферментации, осуществляемый дрожжевыми клетками и некоторыми другими клетками, метаболизирует сахар и производит алкоголь и углекислый газ в качестве побочных продуктов. Вот почему пиво шипучее: во время брожения его дрожжи выделяют как углекислый газ, который образует пузырьки, так и этиловый спирт.
- Брожение молочной кислоты – Этот тип брожения осуществляется человеком мускул клетки в отсутствие кислорода, а некоторые бактерии. Ферментация молочной кислоты фактически используется людьми, чтобы сделать йогурт. Для приготовления йогурта в молоке выращиваются безвредные бактерии. Молочная кислота, вырабатываемая этими бактериями, придает йогурту характерный острый кислый вкус, а также реагирует с молочными белками, образуя густую кремообразную текстуру.
- Пропионовая кислота – Этот тип ферментации выполняется некоторыми бактериями и используется для приготовления швейцарского сыра. Пропионовая кислота отвечает за характерный острый ореховый вкус швейцарского сыра. Пузырьки газа, созданные этими бактериями, ответственны за отверстия, найденные в сыре.
- Acetogenesis – Ацетогенез – это вид ферментации, осуществляемый бактериями, который производит уксусная кислота как его побочный продукт. Уксусная кислота является отличительным ингредиентом в уксусе, который придает ему острый, кислый вкус и запах. Интересно, что бактерии, которые производят уксусную кислоту, используют этиловый спирт в качестве топлива. Это означает, что для производства уксуса сахаросодержащий раствор должен сначала ферментироваться дрожжами для производства спирта, а затем снова ферментироваться бактериями, которые превращают спирт в уксусную кислоту!
Метаногенез
Метаногенез является уникальным типом анаэробного дыхания, которое может быть выполнено только архебактериями. В метаногенезе углевод-источник топлива расщепляется с образованием углекислого газа и метана.
Метаногенез осуществляется некоторыми симбиотическими бактериями в пищеварительном тракте людей, коров и некоторых других животных. Некоторые из этих бактерий способны переваривать целлюлозу, сахар, содержащийся в растениях, который невозможно разрушить при помощи клеточного дыхания. Симбиотические бактерии позволяют коровам и другим животным получать энергию из этих неперевариваемых сахаров!
Видео:Биологическое окисление. 10 классСкачать
Уравнение дыхания на примере глюкозы
При аэробном дыхании образующаяся в процессе гликолиза пировиноградная кислота в конечном итоге полностью окисляется кислородом до СО2 и воды. В первой фазе пировиноградная кислота расщепляется с образованием СO2 и водорода. Этот процесс протекает в матриксе митохондрий и включает в себя последовательность реакций, называемую циклом Кребса. Во второй фазе отщепившийся водород через ряд окислительно-восстановительных реакций — в так называемой дыхательной цепи — окисляется в конечном счете молекулярным кислородом до воды. Это происходит на так называемых кристах (гребневидных складках внутренней мембраны митохондрий).
Начальные этапы аэробного дыхания представлены на рисунке.
Переходный этап между гликолизом и циклом Кребса
Каждая молекула пировиноградной кислоты поступает в матрикс митохондрий и здесь — в виде ацетильной группы (СН3СОО—) — соединяется с веществом, которое называется коферментом А (или сокращенно КоА), в результате чего образуется ацетилкофермент А (ацетил-КоА). Ацетильная группа содержит два атома углерода (2С), поэтому для того чтобы она могла образоваться, пировиноградная кислота (ЗС) должна угратить атом углерода.
Отщепление атома углерода в виде С02 называется реакцией декарбоксилирования. Это — окислительное декарбоксилирование, поскольку оно сопровождается окислением путем дегидрирования, в результате чего образуется восстановленный НАД.
Цикл Кребса
Этот цикл назван так в честь открывшего его в 1930-х годах исследователя — сэра Ганса Кребса. Его называют также «циклом трикарбоновых кислот» и «циклом лимонной кислоты», поскольку именно эти кислоты в нем участвуют.
Цикл Кребса протекает в матриксе митохондрий. Ацетильные группы (2С) вовлекаются в цикл, присоединяясь к 4С-соединению — щавелевоуксусной кислоте, в результате чего образуется лимонная кислота (6С). Далее следует цикл реакций, в которых поступившие в цикл ацетильные группы декарбоксилируются с образованием двух молекул СO2 и дегидрируются с высвобождением четырех пар атомов водорода, присоединяющихся к переносчикам, в результате чего образуются три молекулы восстановленного НАД и одна молекула восстановленного ФАД. Каждый оборот цикла дает также одну молекулу АТФ. (Напомним, что из одной молекулы глюкозы образуются две ацетильные группы, и значит, для окисления каждой молекулы глюкозы требуются два оборота цикла.) В конце цикла щавеле-воуксусная кислота регенерирует и может теперь присоединить к себе новую ацетильную группу.
Общий баланс аэробного дыхания на этом этапе приведен в таблице.
Суммарное уравнение может быть записано в следующем виде:
Весь водород из молекулы глюкозы оказывается в конечном счете у переносчиков (НАД и ФАД). Весь углерод теряется в виде С02. (Может вызвать удивление присутствие в этом уравнении шести молекул воды. Вода нужна в качестве источника кислорода в реакциях декарбоксили-рования — именно такое происхождение имеет часть кислорода в СO2. Это, впрочем, деталь, которую можно и не учитывать.)
🔥 Видео
Лекторий «ЭФКО». «Дыхание в спорте и жизни. Потенциал для биохакинга» – микробиолог Дмитрий АлексеевСкачать
Цитология. Лекция 54. Окислительное фосфорилированиеСкачать