Уравнение движения точки в декартовых координатах

Уравнение движения материальной точки

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Видео:Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x , y , z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r , υ , φ ;
  • цилиндрическая система с координатами p , z , α ;
  • на полярной плоскости с параметрами r , φ .

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению ( 1 ) определено, если имеется указанное положение в любой момент времени t . Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x ( t ) = x , y ( t ) = y , z ( t ) = z ( 2 ) .

Прямоугольные декартовы координаты x , y , z — это проекции радиус-вектора r ¯ , проведенного из начала координат. Очевидно, что длину и направление r ¯ можно найти из соотношений, где a , β , γ являются образованными радиус-вектором углами с координатными осями.

Равенства ( 2 ) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости О х у , тогда применимы полярные координаты r , φ , относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r = r ( t ) , φ = φ ( t ) ( 3 ) .

Кинематическое уравнение движения точки в криволинейных координатах q 1 , q 2 , q 3 , связанных с декартовыми преобразованиями вида x = x ( q 1 , q 2 , q 3 ) , y = y ( q 1 , q 2 , q 3 ) , z = z ( q 1 , q 2 , q 3 ) ( 4 ) , записывается как

q 1 = q 1 ( t ) , q 2 = q 2 ( t ) , q 3 = q 3 ( t ) ( 5 ) .

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями ( 2 ) , ( 5 ) . Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Дано уравнение движения материальной точки x = 0 , 4 t 2 . Произвести запись формулы зависимости υ x ( t ) , построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x = 0 , 4 t 2 , t = 4 c

Найти: υ x ( t ) , S — ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υ x = υ 0 x + a x t .

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x = x 0 + υ 0 x t + a x t 2 2 , x = 0 , 4 t 2 .

Очевидно, что x 0 = 0 , υ 0 x = 0 , a x = 0 , 8 м / с 2 .

После подстановки данных в уравнение:

Определим точки, изобразим график:

υ x = 0 , t = 0 , υ x = 4 , t = 5

Уравнение движения точки в декартовых координатах

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Дифференциальные уравнения движения материальной точки в теоретической механике

Содержание:

Дифференциальные уравнения движения материальной точки:

Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей.

Силы реакций связей при движении точки могут зависеть в общем случае не только от вида наложенных на точку связей и приложенных к ней сил, но и от характера ее движения, например от ее скорости при движении в воздухе или в какой-либо другой сопротивляющейся среде. В дальнейшем не будем делать различия между свободной и несвободной материальными точками. Обозначая равнодействующую всех заданных сил и сил реакций связей Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах

Из кинематики точки известно, что ускорение Уравнение движения точки в декартовых координатахвыражается через радиус-вектор Уравнение движения точки в декартовых координатах(рис. 3):

Уравнение движения точки в декартовых координатах

Дифференциальное уравнение движения материальной точки в векторной форме имеет вид

Уравнение движения точки в декартовых координатах

Если спроецировать обе части уравнений (7) или (8) на координатные оси, то можно получить дифференциальные уравнения движения точки в проекциях на эти оси.

В декартовой системе координат в общем случае

Уравнение движения точки в декартовых координатах

Проекции ускорения на координатные оси можно выразить через вторые производные по времени от координат движущейся точки:

Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах

Рис. 3

Дифференциальные уравнения движения материальной точки в прямоугольной декартовой системе координат имеют вид

Уравнение движения точки в декартовых координатах

Видео:11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

11 класс, 1 урок, Прямоугольная система координат в пространстве

Частные случаи дифференциального уравнения движения материальной точки

Если известно, что материальная точка движется в одной и той же плоскости, то, принимая ее за координатную плоскость Уравнение движения точки в декартовых координатах, имеем

Уравнение движения точки в декартовых координатах

Так как Уравнение движения точки в декартовых координатах, то, следовательно, Уравнение движения точки в декартовых координатах. В случае движения точки по прямой линии, направив по ней координатную ось Уравнение движения точки в декартовых координатах, получим одно дифференциальное уравнение прямолинейного движения точки

Уравнение движения точки в декартовых координатах

Так как при движении Уравнение движения точки в декартовых координатах, то, следовательно, Уравнение движения точки в декартовых координатах. Для естественных подвижных осей координат (рис. 4), проецируя обе части (7) на эти оси, получаем:

Уравнение движения точки в декартовых координатах

где Уравнение движения точки в декартовых координатахи Уравнение движения точки в декартовых координатах— соответственно проекции ускорения и равнодействующей силы на касательную, главную нормаль и бинормаль к траектории в рассматриваемом положении движущейся точки. Учитывая, что

Уравнение движения точки в декартовых координатах

где Уравнение движения точки в декартовых координатах— радиус кривизны траектории, дифференциальные уравнения движения точки в проекциях на естественные оси имеют вид

Уравнение движения точки в декартовых координатах

Второе уравнение из (12) можно преобразовать:

Уравнение движения точки в декартовых координатах

где Уравнение движения точки в декартовых координатах— угловая скорость вращения касательной к траектории движущейся точки и, следовательно, Уравнение движения точки в декартовых координатах— угол смежности между касательными в двух бесконечно близких точках.

Дифференциальные уравнения (12) можно представить в виде

Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах

Рис. 4

Эта форма дифференциальных уравнений движения точки удобна при исследовании некоторых случаев полета снарядов и ракет, особенно по траектории, лежащей в плоскости. Тогда Уравнение движения точки в декартовых координатахбудет углом между касательной к траектории и любой осью, лежащей в плоскости траектории.

Дифференциальные уравнения движения точки можно представить в любой другой системе координат. Для этого надо знать выражения проекций ускорения на эти оси координат.

Видео:Дифференциальные уравнения движения точкиСкачать

Дифференциальные уравнения движения точки

Дифференциальные уравнения относительного движения точки

Кориолисовыми силами инерции называют две векторные величины, имеющие размерность силы и добавляемые к силам, приложенным к материальной частице, для определения ее относительного ускорения

Все дифференциальные уравнения движения, с которыми мы ознакомились в этой главе, относятся к абсолютному движению, т. е. к движению по отношению к инерциальной системе отсчета. Для написания дифференциальных уравнений движения точки (или частицы) относительно подвижных осей подставим в основное уравнение динамики (123) вместо абсолютного ускорения точки его выражение (110):

Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах(153)

имеющую размерность силы, равную произведению массы материальной частицы на ее переносное ускорение и направленную противоположно этому ускорению, называют переносной силой инерции Кориолиса.

Уравнение движения точки в декартовых координатах(154)

равную произведению массы материальной частицы на ее кориолисово ускорение и направленную противоположно этому ускорению, называют поворотной силой инерции Кориолиса.

Уравнение движения точки в декартовых координатах(155 / )

или в проекциях на оси координат:

Уравнение движения точки в декартовых координатах(155)

Таким образом, относительное движение материальной точки можно описать такими же (по форме) дифференциальными уравнениями, как и абсолютное, но к действующим на точку силам нужно прибавить две кориолисовы силы инерции: переносную и поворотную.

Эти величины следует отличать от даламберовых сил инерции (см. гл. XX), введение которых позволяет решать задачи динамики методом статики.

Пример решения задачи №1

Определить амплитуду вынужденных колебаний в относительном движении вибрографа для записи вертикальных колебаний фундамента (рис. 171), совершающего вместе с фундаментом колебания по закону χ = a sin pt, если вес груза равен G и жесткость пружины с.

Уравнение движения точки в декартовых координатах
Рис. 171

Решение. Рама жестко соединена с фундаментом и участвует в его колебаниях, как и вращающийся барабан В, на котором груз G, перемещаясь вверх и вниз, записывает колебания фундамента. Вертикальные перемещения х’ груза G по отношению к раме являются относительными и по отношению к барабану, если пренебречь его вращением. Уравнение этих относительных перемещений можно составить как уравнение абсолютного движения, если к заданным силам добавить переносную кориолисову силу, равную и противоположную произведению вектора переносного ускорения на массу груза. Переносная сила инерции груза равна

Уравнение движения точки в декартовых координатах

Напишем дифференциальное уравнение относительных колебаний груза, сократив на m:

x’ + k 2 χ’ = ар 2 sin pt.

где Уравнение движения точки в декартовых координатахПренебрегая свободными колебаниями груза, напишем уравнение (149′) установившегося вынужденного колебания груза:

Уравнение движения точки в декартовых координатах

Амплитуда этих колебаний тем менее отличается от амплитуды колебаний фундамента, чем меньше собственная частота k прибора сравнительно с частотой р, т. е. чем меньше жесткость пружины и чем больше масса груза.

Ответ. Уравнение движения точки в декартовых координатах

Пример решения задачи №2

Ползун G (рис. 172) может скользить по хорде AB равномерно вращающегося горизонтального диска, к точкам А и В которой он прикреплен двумя одинаковыми пружинами жесткостью Уравнение движения точки в декартовых координатахкаждая. Принимая ползун за точку массы т и пренебрегая трением, определить зависимость периода τ его колебаний в относительном движении по хорде от угловой скорости ω диска.

Уравнение движения точки в декартовых координатах
Рис. 172

Решение. Построим оси подвижной системы координат с началом в точке О (в положении относительного равновесия ползуна), направив Ox’ но хорде.

Определим силы, действующие на ползун. Если ползун отклонится от равновесного положения О на величину х’, то одна из пружин сожмется, а другая растянется. Согласно закону Гука сила каждой из пружин пропорциональна деформации х’ и направлена к точке О. Следовательно, на ползун действует активная сила

Уравнение движения точки в декартовых координатах

Кроме активной силы, надо учесть действие кориолисовых сил: Φe—переносной и Φc-поворотной.
Переносная сила инерции равна произведению массы т ползуна на его переносное ускорение: Уравнение движения точки в декартовых координатахи направлена против переносного ускорения, т. е. от центра C диска. Чтобы определить проекцию этой силы на Ox’, надо ее модуль умножить на направляющий косинус, который при OG = х’ равен Уравнение движения точки в декартовых координатах.

Поворотная сила Кориолиса равна произведению массы ползуна иа кориолисово ускорение 2ωx’ и направлена против этого ускорения. Таким образом, чтобы определить направление поворотной силы Кориолиса, надо вектор относительной скорости повернуть на 90° против переносного вращения. Находим, что поворотная сила инерции действует перпендикулярно AB и проекция ее на Ox’ равна нулю.

При найденных значениях активных сил и кориолисовых сил дифференциальное уравнение относительного движения ползуна по хорде имеет вид:

mх’ = — cx’ + mω 2 x’= — (с—mω 2 )x’.

Это уравнение выражает гармоническое колебание с периодом Уравнение движения точки в декартовых координатах

Ответ. Уравнение движения точки в декартовых координатахи не зависит от положения хорды.

Пример решения задачи №3

Составить дифференциальное уравнение относительного движения ползуна, описанного в предыдущей задаче, считая, что при его движении вдоль хорды AB возникает трение, пропорциональное нормальному давлению на хорду.

Решение. Нормальное давление обусловлено поворотной силой инерции и нормальной составляющей переносной силы инерции.

Поворотная сила ползуна Φс=2mωx’ переменна по величине и направлению. Она направлена перпендикулярно к хорде AB, но в сторону положительных значений у’, если точка G движется в сторону отрицательных значений х’, т. е, если х’ 2 h. Эта составляющая в рассматриваемом механизме всегда направлена в сторону положительных у’, а потому в суммарном давлении обе кориолисовы силы складываются при х’ 0, и дифференциальное уравнение относительного движения точки имеет вид

mх’ =— (с—mω 2 ) x’ — fm (2ωx’ ± ω2h),

причем знак второго слагаемого в скобках надо брать положительным при х’ 0. Решение такого уравнения при движении точки G влево и вправо получается, конечно, различным. Если Л — 0 и хорда является диаметром, то вместо кулонова трения получается вязкое демпфирование, зависящее от скорости.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Две основные задачи динамики точки
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Сложное движение точки
  • Сложение движение твердого тела
  • Кинематика сплошной среды
  • Аксиомы классической механики

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Скорость и ускорение точки в полярных координатахСкачать

Скорость и ускорение точки в полярных координатах

Траектория и уравнения движения точки

Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах

Уравнение движения точки в декартовых координатах

Видео:Уравнение движенияСкачать

Уравнение движения

Траектория и уравнения движения точки

  • Уравнение движения для локуса и точек 1°.Основные понятия. Траекторией точки называется линия, описываемая точкой движения в пространстве. Траектории могут быть плоскими или пространственными кривыми. Движение точки определяется установлением закона движения. Закон движения точек (уравнения) устанавливает зависимость расположения точек во временном пространстве.

Движение точки M в фиксированной системе координат xyz определяется установкой 3 функций (рис.3.1). * = / > ( ’). J’ = / *( Людмила Фирмаль

Создайте уравнение движения для точки N в декартовой системе координат. Найдите уравнение его орбиты. Определяет полный 1-кратный поворот точки N и точку, в которой координаты обеих точек равны. The solution. To составьте уравнение движения точки N, необходимо представить ее координаты в виде функции времени. Из рисунка найдите координату x в точке N. Х = О с COS Людмила Фирмаль

Затем по координатам определяется максимальное отклонение точки м от центра колебаний О. МПМ = а ХІ =-а. Величина a называется амплитудой колебаний, kt — (- (J называется фазой колебаний, ap-начальной фазой колебаний. Определите период колебаний, то есть время, в течение которого точки совершают 1 полное колебание, то есть возвращаются в исходное положение с той же скоростью и величиной. Обозначим период буквой Т и найдем его значение из условия, что приращение фазы колебаний за это время равно 2π. Иначе говоря

Задача 3.4.Точки перемещаются в соответствии с уравнением. x = A cos(kt-e), (1) г = Б, потому что КТ(2) Определите уравнение траектории движения точки. Как изменяется локус точек при увеличении разности фаз£от 0 до 2r? The solution. To найдя уравнение орбиты точки в явном виде, нужно исключить время из уравнения motion. To для этого сначала преобразуем уравнение движения. х = а соѕ(т-е)= а [потому что КТ потому что£-(- КТ грех грех ЭЖ.(3) решая уравнения (2) и (3) для cos kt и sin kt, получим: Х г — г соз£ а б. Преступление. потому что КТ =£о грех КТ = Добавьте эти уравнения, возведя их в квадрат. г, (т -£»»’) ’ 1 Б% ’ °1 (4) Sin2 е

Или в конце: — В + М — ^^ ко ^ грех ’、 уравнение (4) для любого значения e является уравнением эллипса. Из этого уравнения максимальные и минимальные значения являются Параметры±соответственно. a для x и zt b для y. таким образом, во всех случаях эллипс вписывается в прямоугольники со сторонами 2a и 2b. измените значение от 0 до 2ir. если e = 0, то выражение(4) принимает вид:

Так, если фазы обеих составляющих колебаний перпендикулярны друг другу, то эллипс вырождается в 2 совпадающие прямые, являющиеся диагоналями прямоугольника(рис. в коса -> -= учитывая it_y = 0, горизонтальная дальность полета I определяется из орбитального уравнения (4).

log A x cos2 a следовательно 2 значения x Т / л грех 2а х0 = 0, ХН = 1 = 8. Первое значение соответствует первому моменту (моменту отправления точки), А второе определяет горизонтальное расстояние. Сравнивая значения /и 5, можно сделать вывод, что/ = 2s, то есть точки достигают наивысшего положения в диапазоне горизонтальной половины. Итак, положение точки в пространстве в этой точке.

Уравнение (1) представляет собой параметрическое уравнение траектории a point. To найдя уравнение орбиты точки в координатной форме, нужно исключить время из уравнения(1) и получить форму зависимости. БФ,(Ци, г)= 0, 9а, КР, з)= 0. Комбинация этих 2 уравнений определяет кривую, по которой перемещаются точки. Есть и другие способы указать движение points. In векторным методом, определяющим законы движения, радиус-вектор r движущейся точки M (рис.3.1) задается как функция времени r = r (t).Связь между радиус-вектором r и Декартовыми координатами точки представлена уравнением Р = ХІ * — ый + ЗК. (2 ) Где i, j и k-единичные векторы (единичные векторы) осей. (2)

Если вы получаете x, y> z, текущие координаты точки A4, как определено y. уравнение(1), то (2) x Дайте закон движения точек в векторной форме. 3-й способ задания движения точек называется natural. In в этом случае движение точек определяется уравнением а = /( (). Сферические и цилиндрические координаты часто используются для изучения движения точки в пространстве. Сферическими координатами точки M (рис.3.4) являются расстояние r точки M от неподвижного центра O, угол φ (угол поворота плоскости zOM относительно неподвижной плоскости xOz) и угол ? =?(’) * (5 *)

Уравнение движения для цилиндрических координат: р = п(о> т = м р = РЗ). (си *) м г Так… 1. Рисунок 3.4. Да. Чтобы перейти от сферических координат к декартовым, используйте следующую формулу:> х = р с с COS

Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах Уравнение движения точки в декартовых координатах

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

🎬 Видео

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6

Прямоугольная система координат в пространстве. 11 класс.Скачать

Прямоугольная система координат в пространстве. 11 класс.

7.9. Задание движения точки в полярных координатахСкачать

7.9. Задание движения точки в полярных координатах

Видеоурок "Преобразование координат"Скачать

Видеоурок "Преобразование координат"

Геометрия 11 класс (Урок№1 - Координаты в пространстве. Система координат.)Скачать

Геометрия 11 класс (Урок№1 - Координаты в пространстве. Система координат.)

Полярная система координатСкачать

Полярная система координат

ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.Скачать

ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.

Координаты на плоскости и в пространстве. Вебинар | МатематикаСкачать

Координаты на плоскости и в пространстве. Вебинар | Математика

Движение точки тела. Способы описания движения | Физика 10 класс #2 | ИнфоурокСкачать

Движение точки тела. Способы описания движения | Физика 10 класс #2 | Инфоурок

Дифференциальные уравнения движения материальной точкиСкачать

Дифференциальные уравнения движения материальной точки

Урок 7. Механическое движение. Основные определения кинематики.Скачать

Урок 7. Механическое движение. Основные определения кинематики.

§56 Сферическая система координатСкачать

§56 Сферическая система координат

Декартовые координаты на плоскости. Алгеба 8 класс. Урок 1Скачать

Декартовые координаты на плоскости. Алгеба 8 класс. Урок 1
Поделиться или сохранить к себе: