Уравнение движения тела вращающегося вокруг оси

Вращательное движение тела. Закон вращательного движения

В этой статье описывается важный раздел физики — «Кинематика и динамика вращательного движения».

Содержание
  1. Основные понятия кинематики вращательного движения
  2. Основные элементы кинематики равномерного вращательного движения
  3. Основные элементы кинематики неравномерного вращательного движения
  4. Момент импульса материальной точки
  5. Момент силы, которая действует на i-ю материальную точку
  6. Динамика вращательного движения
  7. Момент импульса и момент инерции
  8. Момент силы и момент инерции
  9. Теорема Штейнера. Закон сложения моментов инерции
  10. Вращение твердого тела вокруг неподвижной оси в теоретической механике
  11. Вращение твердого тела вокруг неподвижной оси
  12. Вращательное движение
  13. Равномерное и равнопеременное вращения
  14. Траектории, скорости и ускорения точек вращающегося тела
  15. Траектории точек вращающегося тела
  16. Ускорение точек вращающегося тела
  17. Аналогия формул
  18. Вращение твердого тела
  19. Теорема о движении центра масс
  20. Теорема Штейнера о параллельном переносе оси вращения
  21. Основное уравнение динамики вращательного движения твердого тела
  22. Закон сохранения момента импульса
  23. 📽️ Видео

Видео:Уравнение движенияСкачать

Уравнение движения

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела — это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r.

Уравнение движения тела вращающегося вокруг оси

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

Если φ измерять в радианах (1 рад — это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

Видео:Основное уравнение динамики вращательного движения. 10 класс.Скачать

Основное уравнение динамики вращательного движения. 10 класс.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Уравнение движения тела вращающегося вокруг оси

Угловая скорость материальной точки или тела — это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

Согласно предварительной формуле размерность угловой скорости

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T — физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

поэтому период вращения определим следующим образом:

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

Видео:Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε, характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

Уравнение движения тела вращающегося вокруг оси

Если тело вращается, ускоряясь, то есть dω/dt > 0, вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено — dω/dt 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой mi на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (Li) направлен перпендикулярно плоскости, проведенной через ri и υi, и образует с ними правую тройку векторов (то есть при движении с конца вектора ri к υi правый винт покажет направление вектора Li).

Уравнение движения тела вращающегося вокруг оси

В скалярной форме

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

Так что момент импульса материальной точки для вращательного движения примет вид

Видео:Урок 93. Основное уравнение динамики вращательного движенияСкачать

Урок 93. Основное уравнение динамики вращательного движения

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

Величина li, равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы Fi.

Видео:Вращение тела вокруг неподвижной осиСкачать

Вращение тела вокруг неподвижной оси

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

Если вместо линейной скорости подставить ее выражение через угловую:

то выражение для момента импульса примет вид

Величина Ii = miri 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

Видео:Скорости и ускорения точек вращающегося телаСкачать

Скорости и ускорения точек вращающегося тела

Момент силы и момент инерции

Закон вращательного движения гласит:

Известно, что представить момент импульса тела можно через момент инерции:

Учитывая, что угловое ускорение определяется выражением

получим формулу для момента силы, представленного через момент инерции:

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Видео:Момент инерцииСкачать

Момент инерции

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I0 + ma 2 ,

где I0 — начальный момент инерции тела; m — масса тела; a — расстояние между осями.

Уравнение движения тела вращающегося вокруг оси

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Видео:Лекция 06 Динамика твердого телаСкачать

Лекция 06 Динамика твердого тела

Вращение твердого тела вокруг неподвижной оси в теоретической механике

Содержание:

Вращение твердого тела вокруг неподвижной оси:

Вращением тела вокруг неподвижной оси называется такое его движение, при котором две точки тела, например А и В, неподвижны (рис. 162). Прямая, проходящая через указанные две неподвижные точки, называется осью вращения. Если мысленно провести через тело две полуплоскости — неподвижную Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

При вращении тела угол поворота его Уравнение движения тела вращающегося вокруг осиизменяется с течением времени, а поэтому он является функцией времени:

Уравнение движения тела вращающегося вокруг оси

Уравнение (97) называется уравнением вращения; зная его, можно для любого момента t найти угол Уравнение движения тела вращающегося вокруг оси, а следовательно, и положение вращающегося тела.

Величины угловой скорости и углового ускорения тела, вращающегося вокруг неподвижной оси, определяются по формулам (87) и (90).

Если Уравнение движения тела вращающегося вокруг оси, то такое вращение тела называется равномерным и уравнение вращения его (97) напишется аналогично уравнению (71) расстояний точки, движущейся равномерно:

Уравнение движения тела вращающегося вокруг оси

Поэтому такое уравнение по аналогии с равномерным движением точки называется уравнением равномерного вращения.

Точно так же, если Уравнение движения тела вращающегося вокруг осито вращение тела называется равнопеременным.

Уравнения равнопеременного вращения тела могут быть выведены аналогично уравнениям (82) и (83) равнопеременного движения точки путем замены линейных характеристик угловыми и записаны в виде:

Уравнение движения тела вращающегося вокруг оси

Условимся угловую скорость вращающегося тела изображать вектором, отложенным по оси вращения в такую сторону, чтобы, смотря с конца этого вектора, вращение тела происходило в направлении, противоположном движению часовой стрелки (рис. 163).

Уравнение движения тела вращающегося вокруг оси

При вращении тела вокруг неподвижной оси (рис. 164) любая точка его М, отстоящая на расстоянии h от оси вращения, описывает окружность радиуса h и имеет линейную скорость, определяемую формулой (89): Уравнение движения тела вращающегося вокруг оси

Если провести из любой точки О оси радиус-вектор в точку М, то вектор линейной скорости точки М может быть представлен также в виде векторного произведения Уравнение движения тела вращающегося вокруг осина Уравнение движения тела вращающегося вокруг оси:

Уравнение движения тела вращающегося вокруг оси

В самом деле, раскрывая векторное произведение, получим величину скорости, определяемую формулой (89):

Уравнение движения тела вращающегося вокруг оси

Вектор же скорости направлен перпендикулярно к плоскости векторов Уравнение движения тела вращающегося вокруг осина Уравнение движения тела вращающегося вокруг осив такую сторон, чтобы обход контура параллелограмма, построенного на Уравнение движения тела вращающегося вокруг осина Уравнение движения тела вращающегося вокруг оси, задаваемый первым вектором Уравнение движения тела вращающегося вокруг оси, стоящим в векторном произведении, происходил против часовой стрелки, что согласуется с определением векторного, произведения двух векторов.

Уравнение движения тела вращающегося вокруг оси

Рис. 164. Рис. 165.

В самом общем случае, когда ось вращения тела составляет любые углы с координатными осями (рис. 165), проекции скорости точки М могут быть найдены по формулам проекций векторного произведения двух векторов (11):

Уравнение движения тела вращающегося вокруг оси

Равенства (101) называются формулами Эйлера. Здесь Уравнение движения тела вращающегося вокруг оси Уравнение движения тела вращающегося вокруг оси— проекции Уравнение движения тела вращающегося вокруг оси; а Уравнение движения тела вращающегося вокруг оси—проекции Уравнение движения тела вращающегося вокруг осина координатные оси.

Если ось вращения вертикальна (рис. 164), то Уравнение движения тела вращающегося вокруг оси Уравнение движения тела вращающегося вокруг осии формулы Эйлера принимают вид:

Уравнение движения тела вращающегося вокруг оси

что было получено нами раньше (88). Мы уже знаем, что величина углового ускорения Уравнение движения тела вращающегося вокруг осиопределяется по формуле (90).

Уравнение движения тела вращающегося вокруг оси

Введем в рассмотрение вектор углового ускорения е, под которым мы будем понимать векторную величину:

Уравнение движения тела вращающегося вокруг оси

Так как Уравнение движения тела вращающегося вокруг осиимеет постоянное направление, то вектор Уравнение движения тела вращающегося вокруг осивсегда совпадает с осью вращения.

При Уравнение движения тела вращающегося вокруг осивекторы Уравнение движения тела вращающегося вокруг оси— одного направления;

при Уравнение движения тела вращающегося вокруг осивекторы Уравнение движения тела вращающегося вокруг оси— противоположных направлений.

Нормальное и касательное ускорения любой точки М вращающегося тела (рис. 166) Moryт быть найдены по формулам (91):

Уравнение движения тела вращающегося вокруг оси

Дадим векторное обобщение этим величинам. В самом общем случае вектор ускорения может быть найден по формуле (79):

Уравнение движения тела вращающегося вокруг оси

Принимая во внимание формулы (100) и (102), имеем:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Действительно, в силу определения векторного произведения, находим:

Уравнение движения тела вращающегося вокруг оси

Это приводит нас к формулам (91). Направления же Уравнение движения тела вращающегося вокруг осисоответствуют правилу откладывания векторов, полученных по правилам векторного произведения (рис. 166).

Задача №1

Маховик делает 360 об/мин. Найти его угловую скорость Уравнение движения тела вращающегося вокруг оси. ,

Решение. В нашем случае Уравнение движения тела вращающегося вокруг осиПо формуле (94) находим:

Уравнение движения тела вращающегося вокруг оси

Задача №2

Маховик начинает вращаться равноускоренно из состояния покоя. Сделав с момента начала движения 60 оборотов, маховик имеет угловую скорость, равную Уравнение движения тела вращающегося вокруг осиОпределить угловое ускорение маховика.

Решение. По условию задачи Уравнение движения тела вращающегося вокруг осиУравнение движения тела вращающегося вокруг оси Уравнение движения тела вращающегося вокруг оси Уравнение движения тела вращающегося вокруг осии Уравнение движения тела вращающегося вокруг оси

По формулам (99) получаем:

Уравнение движения тела вращающегося вокруг оси

Подставляя значение Уравнение движения тела вращающегося вокруг оси, найденное из первого уравнения, во второе, находим:

Уравнение движения тела вращающегося вокруг оси

Задача №3

Тело делает Уравнение движения тела вращающегося вокруг осивокруг оси, составляющей углы Уравнение движения тела вращающегося вокруг осис координатными осями; при этом Уравнение движения тела вращающегося вокруг оси, Уравнение движения тела вращающегося вокруг осииУравнение движения тела вращающегося вокруг оси.

Найти такую точку тела, расположенную в плоскости Уравнение движения тела вращающегося вокруг оси, проекции скорости которой суть: Уравнение движения тела вращающегося вокруг оси.

Решение. Угловая скорость:

Уравнение движения тела вращающегося вокруг оси

Для определения Уравнение движения тела вращающегося вокруг осиимеем известное соотношение: Уравнение движения тела вращающегося вокруг оси Уравнение движения тела вращающегося вокруг осиУравнение движения тела вращающегося вокруг оси, откуда:

Уравнение движения тела вращающегося вокруг оси

Найдем теперь проекции угловой скорости на координатные оси:

Уравнение движения тела вращающегося вокруг оси

По формулам Эйлера (101) имеем:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Из первых двух уравнений находим, что Уравнение движения тела вращающегося вокруг осии Уравнение движения тела вращающегося вокруг оси, а поэтому искомая точка будет: Уравнение движения тела вращающегося вокруг оси

Задача №4

Маховик радиусом R = 1 м вращается вокруг неподвижной оси, проходящей через его центр перпендикулярно к плоскости чертежа, согласно уравнению Уравнение движения тела вращающегося вокруг оси

Найти скорость и ускорение точки М обода маховика по прошествии Уравнение движения тела вращающегося вокруг осипосле начала его движения. Для всех точек маховика, расположенных вдоль радиуса ОМ, изобразить графически скорости и ускорения.

Решение. Найдем сначала по формулам (87) и (90) угловую скорость и угловое ускорение маховика:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Далее, линейная скорость, нормальное и касательное ускорения’ точки М в момент t найдутся по формулам (89) и (91):

Уравнение движения тела вращающегося вокруг оси

При Уравнение движения тела вращающегося вокруг осии Уравнение движения тела вращающегося вокруг оси

Величина и направление ускорения точки М определятся по формулам (92) и (93):

Уравнение движения тела вращающегося вокруг оси

Так как величины линейных скоростей и ускорений точек, расположенных на одном из радиусов’маховика, например ОМ, зависят от величины самого радиуса, входящего в формулы (89) и (92) в первой степени, то отсюда следует, что концы векторов скоростей и ускорений точек одного радиуса будут расположены на прямой (рис. 167). Для удобства выполнения чертежа на радиусе ОМ дано изображение ускорений точек прямой ОМ, а на радиусе Уравнение движения тела вращающегося вокруг оси— изображение скоростей.

Уравнение движения тела вращающегося вокруг оси

Задача №5

Диск, прикрепленный к вертикальной проволоке, совершает крутильные колебания вокруг оси проволоки так, что угол закручивания его меняется по закону: Уравнение движения тела вращающегося вокруг оси, где Уравнение движения тела вращающегося вокруг осивыражается в секундах.

Найти нормальное, касательное и полное ускорения какой-либо точки М на ободе диска в момент Уравнение движения тела вращающегося вокруг оси, если диаметр диска Уравнение движения тела вращающегося вокруг оси(рис. 168).

Уравнение движения тела вращающегося вокруг оси

Указание: находим сначала угловую скорость и угловое ускорение диска по формулам (87) и (90), а затем ускорение точки М по формулам (91) и (92).

Ответ.Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси
Рис. 169.

Задача №6

Зубчатое колесо А радиусом Уравнение движения тела вращающегося вокруг осинаходится во внешнем зацеплении с колесом В радиусом Уравнение движения тела вращающегося вокруг оси(рис. 169). На выступ радиусом Уравнение движения тела вращающегося вокруг осиколеса А намотана нить, к концу которой подвешен груз. Движение груза в сантиметрах и секундах выражается уравнением: Уравнение движения тела вращающегося вокруг осиНайти угловую скорость и угловое ускорение колеса В, а также полное ускорение точки на ободе этого колеса.

Решение. В общей точке касания колеса А и В имеют одинаковую линейную скорость, равную Уравнение движения тела вращающегося вокруг осигде Уравнение движения тела вращающегося вокруг оси— угловые скорости колес А и В. Отсюда следует, что Уравнение движения тела вращающегося вокруг оси

т. е. отношение угловых .скоростей колес обратно пропорционально их радиусам.

Найдем теперь угловую скорость Уравнение движения тела вращающегося вокруг оси, и угловое ускорение Уравнение движения тела вращающегося вокруг осиколеса А:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Вращение колес А и В равноускоренное, а поэтому Уравнение движения тела вращающегося вокруг осии Уравнение движения тела вращающегося вокруг осиоткуда

Уравнение движения тела вращающегося вокруг оси

Отсюда угловая скорость Уравнение движения тела вращающегося вокруг осии угловое ускорение Уравнение движения тела вращающегося вокруг осиколеса В:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Ускорение какой-либо точки обода колеса В находим по формуле (92):

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Видео:Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | ИнфоурокСкачать

Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | Инфоурок

Вращение твердого тела вокруг неподвижной оси

Вращением вокруг неподвижной оси называют движение твердого тела, при котором его точки описывают окружности с центрами на одной и той же неподвижной прямой, перпендикулярной к их плоскостям

Вращательное движение

Как было показано, для определения движения твердого тела достаточно определить движение трех его точек, не лежащих на одной прямой. Пусть во- время движения тела две его точки О и O1 остаются неподвижными.

Тогда движение тела можно определить движением третьей точки К, принадлежащей телу и не лежащей на одной прямой с точками О и O1. Выберем эту точку произвольно и, соединив все три точки прямолинейными отрезками, получим треугольник OO1K-Так как точки О и O1 неподвижны, то неподвижна и сторона OO1 треугольника OO1K, и движение точки К, а также и всего тела определится поворотом плоскости треугольника OO1K вокруг прямой OO1. Точку К мы выбрали произвольно, следовательно, поворачивается вокруг прямой OO1 любая плоскость, проведенная в теле через эту прямую. Такое движение тела называют вращательным движением, или, коротко, вращением, а неподвижную прямую OO1, вокруг которой вращается тело, называют осью вращения.

Ось вращения может проходить и за пределами тела. Так, например, Луна, двигаясь вокруг Земли, повернута к ней всегда одной стороной. Движение Луны по отношению к Земле можно назвать вращением. Ось вращения проходит за пределами Луны через центры круговых траекторий ее точек.

Если движение тела определять по движению его точек, то вращение вокруг оси можно определить как движение твердого тела, при котором все точки тела описывают окружности с центрами на одной и той же неподвижной прямой, перпендикулярной к плоскостям этих окружностей, а ось вращения можно определить как неподвижную прямую, на которой расположены центры окружностей, описываемых точками вращающегося тела.

Вращательное движение твердого тела определено, если задан как функция времени угол, на который поворачивается плоскость, проходящая через ось вращения и какую-нибудь точку вращающегося тела: φ=φ(t)

Уравнение вращательного движения. Построим основную систему координат xcyz, направив ось Oz по оси вращения тела (рис. 101). Эта система неподвижная и не связана с вращающимся телом. Построим теперь другую, подвижную, систему координат x’0y’z’, направив ось Oz’ также по оси OO1 вращения тела, а ось Ox’ — на какую-либо точку K1 тела. Эта система координат неизменно связана с телом и поворачивается вместе с ним относительно основной системы xOyz. Угол φ на который поворачивается плоскость, проходящая через ось вращения и какую-нибудь точку вращающегося тела, называют углом поворота и обозначают буквой φ. Так, если в начальное мгновение оси Ox’ и Ox (см. рис. 101) совпадали, то углом поворота мы назовем двугранный угол между неподвижной плоскостью xθz и подвижной плоскостью x’Oz’ или равный ему линейный угол x’Ox’.

Уравнение движения тела вращающегося вокруг оси
Рис. 101

Угол φ можно рассматривать как угловую координату тела, потому что он определяет положение всего вращающегося тела. Измеряется угол φ в радианах.

Будем считать угол φ положительным, если он отсчитан от положительной оси Ox к положительной оси Оу, т. е. против вращения часовой стрелки, если смотреть с положительного направления оси Oz. При отсчете в противоположную сторону будем считать угол отрицательном.

Чтобы определить вращение тела, надо знать угол поворота как некоторую непрерывную однозначную функцию времени:

Уравнение (82) является уравнением вращательного движения твердого тела вокруг неподвижной оси.
Всякая плоскость OO1K, проведенная через ось вращения и какую-либо точку К тела, поворачивается за данное время на такой же угол φ, на который за это же время повернулась плоскость x’Oz’. Это следует из условия неизменяемости твердого тела.

Угловая скорость выражается первой производной от угла поворота по времени:
Уравнение движения тела вращающегося вокруг оси

Угловая скорость. Угол поворота характеризует вращение тела только с геометрической стороны. Чтобы охарактеризовать вращение тела не только в пространстве, но и во времени, возьмем отношение изменения ∆φ угла поворота ко времени Δt, в течение которого это изменение происходило, называемое средней угловой скоростью тела:

Уравнение движения тела вращающегося вокруг оси(83′)

Пределом отношения (83′) при Δt, стремящимся к нулю, является первая производная от угла поворота по времени. Она характеризует изменение угла поворота в данное мгновение, т. е. характеризует вращение тела не только по отношению к окружающему пространству, но и во времени. Эта величина принята за пространственно-временную меру вращения твердого тела вокруг оси и ее называют угловой скоростью тела:

Уравнение движения тела вращающегося вокруг оси(83)

Знак производной (83) указывает, в какую сторону поворачивается тело вокруг оси Oz: если производная (83) положительна, то наблюдатель, смотрящий с положительной стороны оси Oz, видит тело вращающимся против часовой стрелки, т. е. справа налево — от положительного направления оси Ox к положительному направлению оси Оу: при отрицательной производной (83) вращение тела происходит в обратном направлении.

Размерность угловой скорости равна размерности угла поворота, деленной на размерность времени. Но угол поворота является отвлеченной величиной, и размерность его—единица. Следовательно, размерность угловой скорости обратна размерности времени.

Чаще всего время измеряют в секундах, тогда единица угловой скорости ceκ -1 .

Равномерное вращение иногда характеризуют числом п оборотов, совершаемых телом за единицу времени (обычно за минуту).

Найдем соотношение между угловой скоростью ω, выраженной в радианах в секунду, и числом оборотов в минуту. Если тело делает n оборотов в минуту, то оно поворачивается за каждую минуту на 2πn радианов, а за секунду—в 60 раз меньше, следовательно,

Уравнение движения тела вращающегося вокруг оси(84)

Формулу (84) широко применяют в технической механике. Приближенно можно считать

Уравнение движения тела вращающегося вокруг оси(84′)

В формулах (84) и (84′) n выражеyо в оборотах за минуту, a ω — в радианах за секунду, как их большей частью и выражают. Однако для очень медленно вращающихся тел число оборотов удобнее считать не за минуту, а за другие единицы времени. Так, Земля вращается вокруг своей оси, делая 1 оборот в сутки. Было бы неудобно считать, что Земля делает Уравнение движения тела вращающегося вокруг осиоборота в минуту. Угловую скорость Земли следует подсчитывать не по формуле (84), а из тех соображений, что Земля делает один оборот (2π радианов) за сутки, а в сутках 86400 сек, следовательно,

Уравнение движения тела вращающегося вокруг оси

Самые медленные вращения встречаются в звездном мире. Так -2 .

Чаще всего время измеряется в секундах, тогда единица углового ускорения ceκ -2 , или по записи, рекомендованной ГОСТом, pa∂/ceκ 2 .

Если с течением времени абсолютная величина угловой скорости тела увеличивается, то производная Уравнение движения тела вращающегося вокруг осиимеет тот же знак, что и ω, и вращение тела ускоренное. Если же величина угловой скорости с течением времени уменьшается, то производная Уравнение движения тела вращающегося вокруг осии угловая скорость имеют различные знаки — вращение тела замедленное. Каждое из этих вращений, и ускоренное и замедленное, называют переменным вращением.

Задача №7

Унифиляр (тело, подвешенное на вертикальном стержне) (рис. 102) закрутили на угол Уравнение движения тела вращающегося вокруг осиот равновесного положения и затем (в мгновение t = 0) предоставили самому себе, и он стал вращаться согласно уравнению

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси
Рис. 102

Определить угловую скорость (в ρa∂/ceκ.) и угловое ускорение (в рад/сек) через каждые 3 сек от начала движения.

Решение. Дифференцируя уравнение движения, получим выражение угловой скорости унифиляра:

Уравнение движения тела вращающегося вокруг оси

Дифференцируя вторично найдем, угловое ускорение унифиляра:

Уравнение движения тела вращающегося вокруг оси

Чтобы определить угол поворота, угловую скорость и угловое ускорение в заданные мгновения, надо в уравнение движения тела и в полученные соотношения подставить t = 3, 6, 9, . и т. д. секунд. Анализируя полученные данные относительно ω и ε, убедимся, что унифиляр совершает крутильные колебания с периодом 18 сек.

Равномерное и равнопеременное вращения

Если угловая скорость ω постоянна, то производная Уравнение движения тела вращающегося вокруг оси= 0, и вращение равномерное. Таким образом, при равномерном вращении тела угловое ускорение равно нулю, угловая скорость постоянна, а угол поворота изменяется пропорционально времени:

ε = 0, ω = const, φ = φ0+ωt, (86)

где φ0-начальное значение угла.

Формулы (86) справедливы только для равномерного вращения тела и неприменимы при других движениях.

Из различных переменных вращений тела в задачах наиболее часто встречается равнопеременное вращение. Равнопеременным вращением называют такое вращение твердого тела вокруг оси, πph котором угловое ускорение остается постоянным:

Интегрируя это уравнение, находим

Постоянную интегрирования C1 находим из начальных данных. В начальное мгновение (при t=0) величина угловой скорости была ω0. Подставляя эти частные значения аргумента t и функции ω, находим постоянную C1:

Уравнение движения тела вращающегося вокруг оси

Интегрируя это равенство, получаем

Уравнение движения тела вращающегося вокруг оси

Постоянную C2 находим из начальных данных. Если при начале вращения тело было повернуто на некоторый угол φ0, то, подставляя φ0 вместо φ и 0 вместо t, найдем C2 = φ0. Для равнопеременного вращения тела имеем:
Уравнение движения тела вращающегося вокруг оси(87)

Формулы (87) справедливы только для равнопеременного вращения твердого тела и неприменимы при других движениях.

Задача №8

Барабан суперцентрифуги делает при установившемся движении 30000 об/мин, а после прекращения подачи энергии (на выбеге) вращается равнозамедленно с угловым ускорением ε=π1∕ceκ 2 . Определить время выбега (время до остановки) и угол поворота барабана за это время.

Решение. В мгновение прекращения подачи энергии угловая скорость барабана была

Уравнение движения тела вращающегося вокруг оси

C этого мгновения барабан вращается равнозамедленно по (87):

В мгновение остановки барабана угловая скорость его равна нулю. Подставляя это значение угловой скорости, находим время выбега.

t = 1000 сек = 16 мин 40 сек.

За это время барабан повернется на угол

Уравнение движения тела вращающегося вокруг оси

Чтобы по углу поворота определить число оборотов, надо поделить этот угол (выраженный в радианах) yа 2π—число радианов в одном обороте.

Ответ. t = 16 мин 40 сек, φ = 250 000 об.

Задача №9

В инерционном аккумуляторе Уфимцева (1918 г.) для ветроэлектрических станций стальной диск вращается в глубоком вакууме, делая 20 000 об/мин. Предоставленный самому себе, он продолжает вращаться в течение двух недель. Определить е диска, считая вращение равнозамедленным.

Решение. Определим начальную угловую скорость диска н время (2 нед.) до остановки в секундах:

Уравнение движения тела вращающегося вокруг оси

Ответ получим, разделив ω0 на t.

Ответ. Уравнение движения тела вращающегося вокруг оси

Траектории, скорости и ускорения точек вращающегося тела

Точки вращающегося тела, расположенные на одной прямой, параллельной оси вращения, совершают одинаковые движения

Траектории точек вращающегося тела

Вращением тела называют движение, при котором точки тела описывают окружности с центром на оси вращения. Следовательно, по самому определению вращательного движения траектории точек тела—окружности.

Если тело мысленно пересечь какой-либо плоскостью, перпендикулярной оси вращения, то в этой плоскости будут находиться круговые траектории всех расположенных в ней точек тела. Очевидно, что движения точек тела, лежащих на ном в какой-либо из точек к этой плоскости, совершенно одинаковы, а потому и движение точек всего тела может быть полностью охарактеризовано движением точек, лежащих в этой плоскости.

Сохраним и в этом параграфе расположение осей координат (см. рис. 101), при котором оси Oz и Oz’ неподвижной и подвижной систем совпадают с осью вращения тела, а плоскость x’0y’ находится в плоскости хОу.

Возьмем в этом теле какую-либо точку К (рис. 103), координаты которой относительно подвижной системы обозначимx’,y’ и г’. Эти координаты точки К во время вращения тела не меняются, так как оси подвижной системы координат неизменно связаны с телом и вращаются вместе с ним. Координаты той же точки в основной системе обозначим х, у и z.

Координаты х и у точки К связаны с координатами х’ и у’ той же точки формулами, известными из аналитической геометрии и понятными из чертежа (рис. 103):

х = х’ cos φ—y’ sin φ, (88′)

y = x’ sin φ +y’ os φ. (88″)

Если тело вращается, то с течением времени меняется угол φ, являющийся некоторой функцией (71) от времени t, а следовательно, меняются и координаты х и у точки К в основной системе отсчета. Координата же z при направлении оси Oz вдоль оси вращения не изменяется и остается равной z’:

Аналогично можно определить подвижные координаты по неподвижным и углу φ:

х’ = х cos φ у sin φ; y’ = y cos φ—x sinφ; z’ = z.

Скорость точки тела, вращающегося вокруг оси, равна произведению угловой скорости тела на расстояние точки от оси: υ= ωr

Скорости точек вращающегося тела. Для получения проекций скорости на неподвижные оси координат продифференцируем по времени равенства (88), рассматривая φ как функцию времени. Будем иметь

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Но согласно (88) выражение, стоящее в скобках в первом из этих равенств, есть у, а во втором х, а потому Уравнение движения тела вращающегося вокруг оси(89)

Возводя эти равенства в квадрат и складывая, найдем

Уравнение движения тела вращающегося вокруг оси

Но в левой части мы имеем квадрат полной скорости точки, а в скобках правой части — квадрат расстояния точки от оси. Мы получили одну из главнейших формул кинематики:
υ = ωr (90)

— величина скорости точки вращающегося тела равна произведению угловой скорости тела на расстояние точки от оси вращения.

Таким образом, для определения скорости точки вращающегося тела нет необходимости знать ее координаты, надо знать лишь расстояние точки от оси вращения и угловую скорость тела.

Можно определить угловую скорость тела по скорости какой-либо из его точек и по расстоянию этой точки от оси вращения:

Уравнение движения тела вращающегося вокруг оси(91)

По этим формулам можно определить скорость любой точки вращающегося тела, независимо от того, какую форму имеет тело и находится точка на поверхности или внутри тела. Скорость точки тела, вращающегося вокруг оси, называют вращательной скоростью точки. Она направлена перпендикулярно к плоскости, проходящей через точку и ось вращения, против хода часовой стрелки или по ходу часовой стрелки в зависимости от знака производной (83).

Если же смотреть на тело с той стороны оси вращения, куда мы направили вектор Уравнение движения тела вращающегося вокруг осиугловой скорости, то вектор вращательной скорости Уравнение движения тела вращающегося вокруг осивсякой точки тела направлен против хода часов. Такое же направление (против хода часов) имеет вектор Уравнение движения тела вращающегося вокруг оси, если смотреть на него с конца вектора вращательной скорости Уравнение движения тела вращающегося вокруг оси.

Следовательно, вектор вращательной скорости точки и по величине и по направлению можно рассматривать как момент вектора угловой скорости тела относительно этой точки. Его можно представить в виде векторного произведения аналогично тому, как это сделано в статике с моментом силы относительно точки.

Уравнение движения тела вращающегося вокруг оси

Вращательную скорость точек, лежащих на поверхности цилиндра (шкива, барабана, махового колеса, вала и т. п.), вращающегося вокруг своей оси, называют окружной скоростью тела. Окружная скорость равна произведению ω на радиус R тела:

Задача №10

Определить вращательную скорость точек земной поверхности на экваторе и на широте Москвы (55°45′) при вращении Земли вокруг оси (рис. 104). Средний радиус Земли 6371 км и cos 55 o 45′ = 0,5628.

Уравнение движения тела вращающегося вокруг оси
Рис. 104

Решение. Вращаясь вокруг своей оси, Земля совершает один оборот (2π рад) за сутки (86 400 сек), и угловая скорость Земли ω=727∙10 -7 pa∂/ceκ. Умножая угловую скорость на радиус Земли, выраженный в метрах (6371 ∙ 10 3 ), найдем вращательную скорость точек Земли на экваторе:

υ= ωR=727 • 6371 • 10 -4 = 463 м/сек.

Для определения вращательной скорости точек в Москве надо умножить ω Земли на расстояние г от Москвы до земной оси:

υ = 727 • 10 -7 • 0,5628 • 6371 • 10 3 = 261 м/сек.

Ответ. Вращательная скорость точек на экваторе 463 м/сек, в Москве 261 м/сек.

Она направлена против вращения часовой стрелки, если смотреть с северного полюса.

Задача №11

Шкив динамомашины R1= 15 см (рис. 105) вращается посредством бесконечного ремня от паровой машины со шкивом R2 — 60 см, делающим 100 об/мин. Определить угловую скорость ω1 шкива динамомашины.

Уравнение движения тела вращающегося вокруг оси
Рис. 105

Решение. Определим окружную скорость шкива паровой машины:

Уравнение движения тела вращающегося вокруг оси

Такова же величина скорости частиц ремня, а следовательно, и окружная скорость шкива динамомашины. Его угловая скорость
Уравнение движения тела вращающегося вокруг оси

Ответ. ω1=41,87 рад/сек, n = 400 об/мин.

Касательное ускорение точки вращающегося тела равно произведению углового ускорения тела на расстояние точки от оси вращения тела: αr=er

Ускорение точек вращающегося тела

Если в выражении касательного (69) и нормального (74) ускорений вместо скорости v мы подставим выражение (90) вращательной скорости, то получим касательное и нормальное ускорения точки тела, вращающегося вокруг неподвижной оси.

Уравнение движения тела вращающегося вокруг оси

Касательное ускорение точки вращающегося тела равно произведению углового ускорения тела на расстояние точки от оси вращения.

Центростремительное ускорение точки вращающегося тела равно произведению квадрата угловой скорости тела на расстояние точки от оси вращения тела:
αN=ω 2 r

Каждая точка вращающегося тела описывает окружность, а потому радиус кривизны р траектории точки равен расстоянию этой точки от оси вращения тела. Имеем

Уравнение движения тела вращающегося вокруг оси

Нормальное ускорение точки вращающегося тела обычно называют центростремительным ускорением. Оно равно произведению квадрата угловой скорости на расстояние точки от оси вращения тела.

Величина полного ускорения точки тела, вращающегося вокруг оси, выражается формулой
Уравнение движения тела вращающегося вокруг оси

Зная касательное и центростремительное ускорения, определим по формуле (75) величину полного ускорения этой точки:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси. (94)

Иногда бывает необходимо определить проекции ускорения точки вращающегося тела на неподвижные оси координат. Для этого продифференцируем равенства (89) по времени, учитывая, что при вращении тела меняется не только его угловая скорость, но и координаты х и у его точек:

Подставляя вместо υx и υy их значения (89), найдем проекции ускорения точки вращающегося тела на неподвижные оси:

Уравнение движения тела вращающегося вокруг оси. (95)

Возводя в квадрат и складывая, найдем

a 2 = (x 2 + y 2 ) (ε 2 + ω 4 ),

или, так как x 2 +y 2 = r 2 , получаем уже знакомую нам формулу (94). Следовательно,

Задача №12

Тело вращается вокруг оси Oz без начальной угловой скорости и с постоянным угловым ускорением ε = 0,4 рад/сек 2 . Определить для t = 10 сек: 1) координаты точки К тела, если при t = 0 координаты точки К были: х = +10, y=0, z-0∙, 2) ее вращательную скорость; 3) направляющие косинусы вращательной скорости; 4) касательное и центростремительное ускорения той же точки; 5) направляющие косинусы касательного и центростремительного ускорений; 6) угол, составляемый векторами полного и центростремительного ускорений.

Решение. Тело вращается равноускоренно; по (87) найдем угловое ускорение, угловую скорость и угол поборота тела для заданного мгновения: ε = 0,4 ρaд/ceκ 2 ; ω = 0,4 • 10 = 4 ρaд/ceκ;

Уравнение движения тела вращающегося вокруг оси

Тело повернулось за 10 сек на 20 рад. Переведем радианы в градусы:

за вычетом полных оборотов определим угол αr, составляемый радиусом-вектором с осью Ox (рис. 106):

20 рад = 65 о 54’56»,

По тригонометрическим таблицам находим: cos ar = 0,4080, sin ar = 0,9130. Приняв во внимание, что расстояние точки К от оси вращения тела равно 10 см, найдем координаты точки К в мгновение t=10 сек:

х=10 cos ar = +4,080 см,

y = 10 sin ar = +9,130 см.

Величину вращательной скорости определим по (90):

υ = ωr = 4 • 10 = 40 см/ceκ.

Чтобы определить направляющие косинусы вращательной скорости, найдем сначала по (89) ее проекции на оси координат:
υx= — yω = — 36,52 см/сек,

по затем по (62) — направляющие косинусы:

Уравнение движения тела вращающегося вокруг оси

Определим по (92) величину касательного ускорения:

и по (95′) — проекции касательного ускорения на оси х и у:

aTx = — yε=—3,652 см/сек 2 , aTy = xε =+1,632 см/сек 2 .

Разделив проекции на модуль касательного ускорения, найдем направляющие косинусы касательного ускорения:

Уравнение движения тела вращающегося вокруг оси

Мы видим, что направляющие косинусы касательного ускорения тождественны с направляющими косинусами скорости.

Напомним, что знак направляющего косинуса определяется знаком числителя. Если ω и ε имеют одинаковые знаки (как в данной задаче), то тело вращается ускоренно и направление касательных ускорений его точек совпадает с направлением их скоростей, если же знаки ω и ε различны, то вращение замедленное и векторы касательных ускорений и скоростей точек направлены в противоположные стороны.

Величину центростремительного ускорения определим по (93);

aN=ω 2 r = 4 2 ∙10 = 160 см/сек 2

и по (95′) —его проекции на оси координат:

aNx=—xω 2 = —65,280 см/сек 2 ,

aNy = — yω 2 = —146,080 см/сек 2 .

Проекции нормального ускорения точки на оси координат имеют знаки, обратные знаку соответствующей координаты точки. В самом деле, ayx отрицательна, если абсцисса х положительна, и положительна, если х отрицательна (аналогично и ayy). Следовательно, центростремительное ускорение всегда направлено к началу координат, т. е. к центру круговой траектории точки.

Разделив проекции центростремительного ускорения на его модуль, найдем направляющие косинусы центростремительного ускорения:

Уравнение движения тела вращающегося вокруг оси

Уравнение движения тела вращающегося вокруг оси

Так как касательное ускорение перпендикулярно к центростремительному, то (по условию перпендикулярности, известному из аналитической геометрии) сумма произведений соответствующих направляющих косинусов должна равняться нулю. Действительно,

cos aT cos aN + cos βT cos βN = ( — 0,9130) ( —0,4080) + ( + 0,4080) ( — 0,9130) =0.

Определим теперь тангенс угла между направлением полного и нормального ускорений:

Уравнение движения тела вращающегося вокруг оси

Пользуясь таблицами тригонометрических функций, определим, что угол равен l o 26’0″.

Ответ. 1) х = + 4,080 см, у = + 9,130 см; 2) υ = 40 см/сек, 3)cos aυ=—0,9130, cos βυ = +0.4080; 4) aT = 4 см/сек1, aN= 160 см/сек 2 ; 5) cos aT=—0,9130, cos βT= +0,4080, cos aN = — 0,4080, cos βN=—0,9130; 6) угол равен l o 26’0″.

Задача №13

При сборке ротора молотковой дробилки была допущена неточность, в результате которой центр тяжести ротора отстоит от оси вращения на расстоянии 1 мм. Определить центростремительное ускорение центра тяжести ротора, если n = 3000 об/мин.

Решение. По формулам (84) и (93) имеем

Уравнение движения тела вращающегося вокруг оси

Ответ. aN=98,6 м/сек 2 ≈ 10g.

Зависимости между углом поворота, угловой скоростью, угловым ускорением и временем аналогичны зависимостям между расстоянием, скоростью, касательным ускорением и временем

Аналогия формул

Формулы кинематики вращательного движения аналогичны соответствующим формулам кинематики точки и могут быть из них получены, если заменить расстояние s углом поворота φ, скорость υ— угловой скоростью ω и касательное ускорение αT-угловым ускорением ε. Это правило является мнемоническим, оно непригодно для вывода формул, но может облегчить их запоминание. Ниже приведен ряд формул, получающихся одна из другой такой заменой.

Уравнение движения по траектории
s=s(t)

Средняя скорость точки
Уравнение движения тела вращающегося вокруг оси

Величина скорости точки
Уравнение движения тела вращающегося вокруг оси

Величина касательного ускорения
Уравнение движения тела вращающегося вокруг оси

Равномерное движение точки
Уравнение движения тела вращающегося вокруг оси

Равнопеременное движение
Уравнение движения тела вращающегося вокруг оси

Уравнение вращения вокруг оси
φ=φ(t)

Средняя угловая скорость тела
Уравнение движения тела вращающегося вокруг оси

Величина угловой скорости тела
Уравнение движения тела вращающегося вокруг оси

Величина углового ускорения
Уравнение движения тела вращающегося вокруг оси

Равномерное вращение тела
Уравнение движения тела вращающегося вокруг оси

Равнопеременное вращение
Уравнение движения тела вращающегося вокруг оси

Движение точкиВращение точки
Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Сферическое движение твердого тела
  • Плоско-параллельное движение твердого тела
  • Движение твердого тела, имеющего неподвижную точку
  • Движение твердого тела
  • Теория пар, не лежащих в одной плоскости
  • Произвольная пространственная система сил
  • Центр параллельных сил и центр тяжести
  • Поступательное движение твердого тела

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Вращательное движение твердого телаСкачать

Вращательное движение твердого тела

Вращение твердого тела

Для кинематического описания процесса вращения твердого тела нужно ввести такие понятия как угловое перемещение Δ φ , угловое ускорение ε и угловая скорость ω :

ω = ∆ φ ∆ t , ( ∆ t → 0 ) , ε = ∆ φ ∆ t , ( ∆ t → 0 ) .

Углы выражаются в радианах. За положительное направление вращения принимается направление против часовой стрелки.

Когда твердое тело вращается относительно неподвижной оси, все точки этого тела перемещаются с одинаковыми угловыми скоростями и ускорениями.

Уравнение движения тела вращающегося вокруг оси

Рисунок 1. Вращение диска относительно оси, проходящей через его центр O .

Если угловое перемещение Δ φ мало, то модуль вектора линейного перемещения ∆ s → некоторого элемента массы Δ m вращающегося твердого тела можно выразить соотношением:

в котором r – модуль радиус-вектора r → .

Между модулями угловой и линейной скоростей можно установить связь посредством равенства

Модули линейного и углового ускорения также взаимосвязаны:

Векторы v → и a → = a τ → направлены по касательной к окружности радиуса r .

Также нам необходимо учесть возникновение нормального или центростремительного ускорения, которое всегда возникает при движении тел по окружности.

Модуль ускорения выражается формулой:

a n = v 2 r = ω 2 r .

Если разделить вращающееся тело на небольшие фрагменты Δ m i , обозначить расстояние до оси вращения через r i , а модули линейных скоростей через v i , то запись формулы кинестетической энергии вращающегося тела будет иметь вид:

E k = ∑ i ν m v i 2 2 = ∑ i ∆ m ( r i ω ) 2 2 = ω 2 2 ∑ i ∆ m i r i 2 .

Физическая величина ∑ i ∆ m i r i 2 носит название момента инерции I тела относительно оси вращения. Она зависит от распределения масс вращающегося тела относительно оси вращения:

I = ∑ i ∆ m i r i 2 .

В пределе при Δ m → 0 эта сумма переходит в интеграл. Единица измерения момента инерции в С И – килограммметр в квадрате ( к г · м 2 ) . Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде:

В отличие от выражения, которое мы использовали для описания кинестетической энергии поступательно движущегося тела m v 2 2 , вместо массы m в формулу входит момент инерции I . Также мы принимаем во внимание вместо линейной скорости v угловую скорость ω .

Если для динамики поступательного движения основную роль играет масса тела, то в динамике вращательного движения имеет значение момент инерции. Но если масса – это свойство рассматриваемого твердого тела, которое не зависит от скорости движения и других факторов, то момент инерции зависит от того, вокруг какой оси вращается тело. Для одного и того же тела момент инерции будет определяться различными осями вращения.

В большинстве задач считается, что ось вращения твердого тела проходит через центр его массы.

Положение x C , y C центра масс для простого случая системы из двух частиц с массами m 1 и m 2 , расположенными в плоскости X Y в точках с координатами x 1 , y 1 и x 2 , y 2 определяется выражениями:

x C = m 1 x 1 + m 2 x 2 m 1 + m 2 , y C = m 1 y 1 + m 2 y 2 m 1 + m 2 .

Уравнение движения тела вращающегося вокруг оси

Рисунок 2. Центр масс C системы из двух частиц.

В векторной форме это соотношение принимает вид:

r C → = m 1 r 1 → + m 2 r 2 → m 1 + m 2 .

Аналогично, для системы из многих частиц радиус-вектор r C → центра масс определяется выражением

r C → = ∑ m i r i → ∑ m i .

Если мы имеем дело с твердым телом, состоящим из одной части, то в приведенном выражении суммы для r C → необходимо заменить интегралами.

Центр масс в однородном поле тяготения совпадает с центром тяжести. Это значит, что если мы возьмем тело сложной формы и подвесим его за центр масс, то в однородном поле тяготения это тело будет находиться в равновесии. Отсюда следует способ определения центра масс сложного тела на практике: его необходимо последовательно подвесить за несколько точек, одновременно отмечая по отвесу вертикальные линии.

Уравнение движения тела вращающегося вокруг оси

Рисунок 3. Определение положения центра масс C тела сложной формы. A 1 , A 2 , A 3 точки подвеса.

На рисунке мы видим тело, которое подвешено за центр масс. Оно находится в состоянии безразличного равновесия. В однородном поле тяготения равнодействующая сил тяжести приложена к центру масс.

Мы можем представить любое движение твердого тела как сумму двух движений. Первое поступательное, которое производится со скоростью центра масс тела. Второе – это вращение относительно оси, которая проходит через центр масс.

Предположим. Что у нас есть колесо, которое катится по горизонтальной поверхности без проскальзывания. Все точки колеса во время движения перемещаются параллельно одной плоскости. Такое движение мы можем обозначить как плоское.

Видео:Поступательное и вращательное движенияСкачать

Поступательное и вращательное движения

Теорема о движении центра масс

Кинестетическая энергия вращающегося твердого тела при плоском движении будет равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, которая проведена через центр масс и располагается перпендикулярно плоскостям, в которых движутся все точки тела:

E k = m v C 2 2 + I C ω 2 2 ,

где m – полная масса тела, I C – момент инерции тела относительно оси, проходящей через центр масс.

Уравнение движения тела вращающегося вокруг оси

Рисунок 4. Качение колеса как сумма поступательного движения со скоростью v C → и вращения с угловой скоростью ω = v C R относительно оси O , проходящей через центр масс.

В механике используется теорема о движении центра масс.

Любое тело или несколько взаимодействующих тел, которые представляют собой единую систему, обладают центром масс. Этот центр масс под воздействием внешних сил перемещается в пространстве как материальная точка, в которой сосредоточена вся масса системы.

На рисунке мы изобразили движение твердого тела, на которое действуют силы тяжести. Центр масс тела движется по траектории, которая близка к параболе, тогда как траектория остальных точек тела является более сложной.

Уравнение движения тела вращающегося вокруг оси

Рисунок 5. Движение твердого тела под действием силы тяжести.

Видео:Момент импульса. 10 класс.Скачать

Момент импульса. 10 класс.

Теорема Штейнера о параллельном переносе оси вращения

Рассмотрим случай, когда твердое тело движется вокруг некоторой неподвижной оси. Момент инерции этого тела инерции I можно выразить через момент инерции I C этого тела относительно оси, проходящей через центр масс тела и параллельной первой.

Уравнение движения тела вращающегося вокруг оси

Рисунок 6. К доказательству теоремы о параллельном переносе оси вращения.

Для примера возьмем твердое тело, форма которого произвольна. Обозначим центр масс С . Выберем систему координат Х У с началом координат 0 . Совместим центр масс и начало координат.

Одна из осей проходит через центр масс С . Вторая ось пересекает произвольно выбранную точку Р , которая расположена на расстоянии d от начала координат. Выделим некоторый малый элемент массы данного твердого тела Δ m i .

По определению момента инерции:

I C = ∑ ∆ m i ( x i 2 + y i 2 ) , I P = ∑ m i ( x i — a ) 2 + y i — b 2

Выражение для I P можно переписать в виде:

I P = ∑ ∆ m i ( x i 2 + y i 2 ) + ∑ ∆ m i ( a 2 + b 2 ) — 2 a ∑ ∆ m i x i — 2 b ∑ ∆ m i y i .

Два последних члена уравнения обращаются в нуль, так как начало координат в нашем случае совпадает с центром масс тела.

Так мы пришли к формуле теоремы Штейнера о параллельном переносе оси вращения.

Для тела, которое вращается относительно произвольной неподвижной оси, момент инерции, согласно теореме Штейнера, равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями.

I P = I C + m d 2 ,

где m – полная масса тела.

Уравнение движения тела вращающегося вокруг оси

Рисунок 7. Модель момента инерции.

На рисунке ниже изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Уравнение движения тела вращающегося вокруг оси

Рисунок 8. Моменты инерции I C некоторых однородных твердых тел.

Видео:Вращательное движение твёрдого тела. Задачи 1, 2, 3Скачать

Вращательное движение твёрдого тела. Задачи 1, 2, 3

Основное уравнение динамики вращательного движения твердого тела

В тех случаях, когда мы имеем дело с твердым телом, которое вращается относительно неподвижной оси, мы можем обобщить второй закон Ньютона. На рисунке ниже мы изобразили твердое тело произвольной формы, вращающееся относительно некоторой оси, проходящей через точку О . Ось вращения расположена перпендикулярно плоскости рисунка.

Δ m i – это произвольный малый элемент массы, на который оказывают воздействие внешние и внутренние силы. Равнодействующая всех сил есть F i → . Ее можно разложить на две составляющие: касательную составляющую F i τ → и радиальную F i r → . Радиальная составляющая F i r → создает центростремительное ускорение a n .

Уравнение движения тела вращающегося вокруг оси

Рисунок 9. Касательная F i τ → и радиальная F i r → составляющие силы F i → действующей на элемент Δ m i твердого тела.

Касательная составляющая F i τ → вызывает тангенциальное ускорение a i τ → массы Δ m i . Второй закон Ньютона, записанный в скалярной форме, дает

∆ m i a i τ = F i τ sin θ или ∆ m i r i ε = F i sin θ ,

где ε = a i τ r i – угловое ускорение всех точек твердого тела.

Если обе части написанного выше уравнения умножить на r i , то мы получим:

∆ m i r i 2 ε = F i r i sin θ = F i l i = M i .

Здесь l i – плечо силы, F i , → M i – момент силы.

Теперь нужно аналогичные соотношения записать для всех элементов массы Δmi вращающегося твердого тела, а затем просуммировать левые и правые части. Это дает:

∑ ∆ m i r i 2 ε = ∑ M i .

Стоящая в правой части сумма моментов сил, действующих на различные точки твердого тела, состоит из суммы моментов всех внешних сил и суммы моментов всех внутренних сил.

∑ M = ∑ M i в н е ш н + ∑ M i в н у т р .

Но сумма моментов всех внутренних сил согласно третьему закону Ньютона равна нулю, поэтому в правой части остается только сумма моментов всех внешних сил, которые мы будем обозначать через M . Так мы получили основное уравнение динамики вращательного движения твердого тела.

Угловое ускорение ε и момент сил M в этом уравнении являются величинами алгебраическими.

Обычно за положительное направление вращения принимают направление против часовой стрелки.

Возможна и векторная форма записи основного уравнения динамики вращательного движения, при которой величины ω → , ε → , M → определяются как векторы, направленные по оси вращения.

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Закон сохранения момента импульса

В разделе, посвященном поступательному движению тела, мы ввели понятие импульса тела p → . По аналогии с поступательным движением для вращательного движения мы вводим понятие момента импульса.

Момент импульса вращающегося тела – это физическая величина, которая равняется произведению момента инерции тела I на угловую скорость ω его вращения.

Для обозначения момента импульса используется латинская буква L .

Поскольку ε = ∆ ω ∆ t ; ∆ t → 0 , уравнение вращательного движения можно представить в виде:

M = I ε = I ∆ ω ∆ t или M ∆ t = I ∆ ω = ∆ L .

M = ∆ L ∆ t ; ( ∆ t → 0 ) .

Мы получили это уравнение для случая, когда I = c o n s t . Но оно будет справедливо и тогда, когда момент инерции тела будет изменяться в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L = I ω относительно данной оси сохраняется: ∆ L = 0 , если M = 0 .

L = l ω = c o n s t .

Так мы пришли к закону сохранения момента импульса.

В качестве примера приведем рисунок, на котором изображено неупругое вращательное столкновение дисков, которые насажены на общую для них ось.

Уравнение движения тела вращающегося вокруг оси

Рисунок 10. Неупругое вращательное столкновение двух дисков. Закон сохранения момента импульса: I 1 ω 1 = ( I 1 + I 2 ) ω .

Мы имеем дело с замкнутой системой. Для любой замкнутой системы закон сохранения момента импульса будет справедливым. Он выполняется и в условиях экспериментов по механике, и в условиях космоса, когда планеты движутся по своим орбитам вокруг звезды.

Мы можем записать уравнение динамики вращательного движения как для неподвижной оси, так и для оси, которая перемещается равномерно или с ускорением. Вид уравнения не изменится и в том случае, если ось движется ускоренно. Для этого должно выполняться два условия: ось должна проходить через центр массы тела, а ее направление в пространстве остается неизменным.

Предположим, что у нас есть тело (шар или цилиндр), которое катится по наклонной плоскости с некоторым трением.

Уравнение движения тела вращающегося вокруг оси

Рисунок 11. Качение симметричного тела по наклонной плоскости.

Ось вращения O проходит через центр масс тела. Моменты силы тяжести m g → и силы реакции N → относительно оси O равны нулю. Момент M создает только сила трения: M = F т р R .

Уравнение вращательного движения:

I C ε = I C a R = M = F т р R ,

где ε – угловое ускорение катящегося тела, a – линейное ускорение его центра масс, I C – момент инерции относительно оси O , проходящей через центр масс.

Второй закон Ньютона для поступательного движения центра масс записывается в виде:

m a = m g sin α — F т р .

Исключая из этих уравнений F т р , получим окончательно:

α = m g sin θ I C R 2 + m .

Из этого выражения видно, что быстрее будет скатываться с наклонной плоскости тело, обладающее меньшим моментом инерции. Например, у шара I C = 2 5 m R 2 , а у сплошного однородного цилиндра I C = 1 2 m R 2 . Следовательно, шар будет скатываться быстрее цилиндра.

📽️ Видео

Основные понятия и уравнения кинематики равноускоренного движения тела.Скачать

Основные понятия и уравнения кинематики равноускоренного движения тела.

Поступательное и вращательное движения.Скачать

Поступательное и вращательное движения.

2.3. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси.Скачать

2.3. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси.
Поделиться или сохранить к себе: