Уравнение движения материальной точки x 8 2t 0 5t2

Уравнение движения материальной точки x 8 2t 0 5t2

Уравнение движения имеет вид
X=X0+V0*t+at^2/2

A) Значит, начальная скорость равна 8.
V(t)=X’(t)=8-t
Это луч, соединяющий точки (0;8) и (8;0) и выходящий из первой точки
В
X(5)=8*5-0,5*5^2=40-25/2=55/2=27,5
V(5)=8-5=3
C)
X=0, значит 8t-0,5t^2=0
t=0 (в начальный момент времени или 8-0,5*t=0, откуда t=16 сек.

Начальная скорость=8м/с
ускорение=1 м/с^2
V=V0+at²/2
скорость после 5-ти секунд движения 8t, 8*5=40м/с
X=X0+Vt
0=0+8t
0=8t
t=0/8
t=0

Видео:Дифференциальное уравнение движения материальной точки.Скачать

Дифференциальное уравнение движения материальной точки.

Кинематическое уравнение движения материальной точки для координаты имеет вид х = (8 + 3t + 5t^2) м. Определите координату и скорость

Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Ваш ответ

Видео:Физика 10 класс (Урок№2 - Равномерное прямолинейное движение материальной точки.)Скачать

Физика 10 класс (Урок№2 - Равномерное прямолинейное движение материальной точки.)

решение вопроса

Видео:Д1 Дифференциальные уравнения движения материальной точкиСкачать

Д1 Дифференциальные уравнения движения материальной точки

Похожие вопросы

  • Все категории
  • экономические 43,410
  • гуманитарные 33,633
  • юридические 17,906
  • школьный раздел 608,042
  • разное 16,856

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Уравнение координаты при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Уравнение координаты — зависимость координаты тела от времени:

Уравнение координаты при равноускоренном прямолинейном движении:

Уравнение движения материальной точки x 8 2t 0 5t2

x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t

Зная уравнение координаты, можно определить координату тела в любой момент времени.

Пример №1. Движение автомобиля задано уравнением:

Уравнение движения материальной точки x 8 2t 0 5t2

Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.

Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с 2 . Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.

В момент времени t = 10 c координата автомобиля равна:

Уравнение движения материальной точки x 8 2t 0 5t2

Видео:Задача на движение материальной точки - bezbotvyСкачать

Задача на движение материальной точки - bezbotvy

Совместное движение двух тел

Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.

Аналитический способ решения задачи на совместное движение тел

Чтобы найти место встречи двух тел, нужно:

  1. Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
  2. Построить уравнение вида x1 = x2.
  3. Найти время встречи двух тел tвстр.
  4. Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.

Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с 2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.

Составим уравнения для движения каждого из тел:

Уравнение движения материальной точки x 8 2t 0 5t2

Приравняем правые части этих уравнений и найдем время t:

Уравнение движения материальной точки x 8 2t 0 5t2

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:

x = 3t = 3∙6 = 18 (м).

Графический способ решения задачи на совместное движение тел

Существует графический способ решения данной задачи. Для этого нужно:

  1. Построить графики x1(t) и x2(t).
  2. Найти точку пересечения графиков.
  3. Пустить перпендикуляр из этой точки к оси ОХ.
  4. Значение точки пересечения — координата места пересечения двух тел.

Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.

Уравнение движения материальной точки x 8 2t 0 5t2

Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!

Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Уравнение движения материальной точки x 8 2t 0 5t2

Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с 2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с 2 , достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.

Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).

В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:

Уравнение движения материальной точки x 8 2t 0 5t2

Приравняем правые части уравнений и вычислим t:

Уравнение движения материальной точки x 8 2t 0 5t2

Уравнение движения материальной точки x 8 2t 0 5t2

В результате получаем два

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

Уравнение движения материальной точки x 8 2t 0 5t2

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а) Уравнение движения материальной точки x 8 2t 0 5t2

б) Уравнение движения материальной точки x 8 2t 0 5t2

в) Уравнение движения материальной точки x 8 2t 0 5t2

г) Уравнение движения материальной точки x 8 2t 0 5t2

Алгоритм решения

  1. Определить характер движения материальной точки.
  2. Записать уравнение координаты материальной точки.
  3. С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.

Решение Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать исходные данные.
  2. Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
  3. Выразить скорость грузовика из уравнения его движения.
  4. Записать уравнение движения мотоциклиста.
  5. Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
  6. Подставить время в формулу скорости грузовика и вычислить ее.

Решение

  • Координата встречи грузовика и мотоциклиста: x = 150 м.
  • Время запаздывания мотоциклиста: tзапазд = 5 с.
  • Ускорение, с которым мотоциклист начал движение: a = 3 м/с 2 .

Запишем уравнение движения грузовика:

Уравнение движения материальной точки x 8 2t 0 5t2

Так как начальная координата равна нулю, это уравнение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Уравнение движения материальной точки x 8 2t 0 5t2

Отсюда скорость движения грузовика равна:

Уравнение движения материальной точки x 8 2t 0 5t2

Запишем уравнение движения мотоциклиста:

Уравнение движения материальной точки x 8 2t 0 5t2

Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:

Уравнение движения материальной точки x 8 2t 0 5t2

Найдем время, через которое грузовик и мотоциклист встретились:

Уравнение движения материальной точки x 8 2t 0 5t2

Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:

Уравнение движения материальной точки x 8 2t 0 5t2

pазбирался: Алиса Никитина | обсудить разбор | оценить

📸 Видео

Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

Дифференциальные уравнения движения материальной точкиСкачать

Дифференциальные уравнения движения материальной точки

Как решать задачи по динамике материальной точки.Скачать

Как решать задачи по динамике материальной точки.

Уравнение движенияСкачать

Уравнение движения

Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точкиСкачать

Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точки

Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Урок 1. Кинематика прямолинейного движения материальной точки.Скачать

Урок 1. Кинематика прямолинейного движения материальной точки.

Физика Движение тела описывается уравнением x = 10 – 4t + 5t^2 (величины выражены в СИ). Масса телаСкачать

Физика Движение тела описывается уравнением x = 10 – 4t + 5t^2 (величины выражены в СИ). Масса тела

Дифференциальные уравнения движения материальной точки. Часть 1Скачать

Дифференциальные уравнения движения материальной точки. Часть 1

Дифференциальные уравнения движения точкиСкачать

Дифференциальные уравнения движения точки

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Физика 10 класс (Урок№3 - Равноускоренное движение материальной точки.)Скачать

Физика 10 класс (Урок№3 - Равноускоренное движение материальной точки.)

Кинематика за 8 минСкачать

Кинематика за 8 мин

Теоретическая механика. Задание Д1 (часть 1) из сборника ЯблонскогоСкачать

Теоретическая механика. Задание Д1 (часть 1) из сборника Яблонского
Поделиться или сохранить к себе: