Уравнение движения электрона в магнитном поле

Шпаргалка по общей электронике и электротехнике.

Видео:Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать

Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой Архиповым

5. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ.

В некоторых электровакуумных приборах используется движение электронов в магнитном поле.

Рассмотрим случай, когда электрон влетает в однородное магнитное поле с начальной скоростью v0, направленной перпендикулярно магнитным силовым линиям. В этом случае на движущийся электрон действует так называемая сила Лоренца F, которая перпендикулярна вектору нО и вектору напряженности магнитного поля Н. Величина силы F определяется выражением: F= еv0Н.

При v0 = 0 сила Рравна нулю, т. е. на неподвижный электрон магнитное поле не действует.

Сила F искривляет траекторию электрона в дугу окружности. Поскольку сила F действует под прямым углом к скорости нО, она не совершает работы. Энергия электрона и его скорость не изменяются по величине. Происходит лишь изменение направления скорости. Известно, что движение тела по окружности (вращение) с постоянной скоростью получается благодаря действию направленной к центру центростремительной силы, которой именно и является сила F.

Направление поворота электрона в магнитном поле в соответствии с правилом левой руки удобно определяется по следующим правилам. Если смотреть в направлении магнитных силовых линий, то электрон движется по часовой стреле. Иначе говоря, поворот электрона совпадает с вращательным движением винта, который ввинчивается по направлению магнитных силовых линий.

Определим радиус r окружности, описываемой электроном. Для этого воспользуемся выражением для центростремительной силы, известным из механики: F = mv20/r. Приравняем его значению силы F = еv0Н: mv20/r = еv0Н. Теперь из этого уравнения можно найти радиус: r= mv0/(еН).

Чем больше скорость электрона v0, тем сильнее он стремится двигаться прямолинейно по инерции и радиус искривления траектории будет больше. С другой стороны, с увеличением Н растет сила F, искривление траектории возрастает и радиус окружности уменьшается.

Выведенная формула справедлива для движения в магнитном поле частиц с любыми массами и зарядом.

Рассмотрим зависимость rот mи е. Заряженная частица с большей массой mсильнее стремится лететь по инерции прямолинейно и искривление траектории уменьшится, т. е. rстанет больше. А чем больше заряд е, тем больше сила F и тем сильнее искривляется траектория, т. е. ее радиус становится меньше.

Выйдя за пределы магнитного поля, электрон дальше летит по инерции по прямой линии. Если же радиус траектории мал, то электрон может описывать в магнитном поле замкнутые окружности.

Таким образом, магнитное поле изменяет только направление скорости электронов, но не ее величину, т. е. между электроном и магнитным полем нет энергетического взаимодействия. По сравнению с электрическим полем действие магнитного поля на электроны является более ограниченным. Именно поэтому магнитное поле применяется для воздействия на электроны значительно реже, нежели электрическое поле.

Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Шаг винтовой линии электрона

Электрон, ускоренный разностью потенциалов U = 6 кВ, влетает в однородное магнитное поле под углом α = 30° к направлению поля и движется по винтовой траектории. Индукция магнитного поля B = 13 мТл. Найти радиус R и шаг h винтовой траектории.

Дано:

U = 6 кВ = 6·10 3 В

В = 13 мТл = 13 ·10 -3 Тл

Уравнение движения электрона в магнитном поле

Уравнение движения электрона в магнитном поле

Решение:

Разложим вектор скорости ν частицы на две составляющие (рис.): v 1 , направленную вдоль линий магнитной индукции, и v2, перпендикулярную этим линиям. Модули этих составляющих – соответственно υ 1 = ν cos α и v 2 = υ sin α

Уравнение движения электрона в магнитном поле

На частицу действует сила Лоренца, обусловленная со­ ставляющей v 2 . Вследствие этого частица движется по окружности со скоростью v 2 в плос­ кости, перпендикулярной магнитному полю. Радиус этой окружности определим, составив уравнение на основании второго закона Ньютона.

По второму закону Ньютона F Л = m е a, где a = υ 2 / R центростремительное ускорение.

Уравнение движения электрона в магнитном поле

Уравнение движения электрона в магнитном поле

Скорость найдем из закона сохранения энергии

Уравнение движения электрона в магнитном поле

Уравнение движения электрона в магнитном поле

Уравнение движения электрона в магнитном поле

Одновременно частица будет двигаться и вдоль поля. Это равномерное движение со скоростью v 1 , так как состав ляющая v 1 не вызывает появления силы Лоренца. В ре­ зультате одновременного движения по окружности и по прямой частица будет двигаться по винтовой линии, «на­виваясь» на линии магнитной индукции. Шаг винтовой линии

Уравнение движения электрона в магнитном поле

где Т — период обращения частицы по окружности:

Уравнение движения электрона в магнитном поле

получаем шаг винтовой линии

Уравнение движения электрона в магнитном поле

Ответ: Уравнение движения электрона в магнитном полеУравнение движения электрона в магнитном поле

Заряд q влетает со скоростью Уравнение движения электрона в магнитном полев однородное постоянное магнитное поле Уравнение движения электрона в магнитном полепод углом a к линиям магнитной индукции (рис. 12.7).

Уравнение движения электрона в магнитном поле

Рис. 12.7. Траектория движения заряда в магнитном поле:
а – отрицательный заряд; б – положительный заряд

Уравнение движения электрона определяется II законом Ньютона (12.1) с учетом магнитной силы (11.9)

Уравнение движения электрона в магнитном поле(12.29)

где q – заряд электрона.

Разложим скорость на составляющие, направленные параллельно и перпендикулярно вектору Уравнение движения электрона в магнитном поле:

Уравнение движения электрона в магнитном полеи Уравнение движения электрона в магнитном поле(12.30)

При движении электрона со скоростью Уравнение движения электрона в магнитном полевдоль силовых линий поля (вдоль вектора Уравнение движения электрона в магнитном поле) магнитная сила равна нулю и поэтому движение электрона будет равномерным и прямолинейным.

При движении электрона со скоростью Уравнение движения электрона в магнитном полемагнитная сила равна

Уравнение движения электрона в магнитном поле,(12.31)

или, в скалярном виде,

Уравнение движения электрона в магнитном поле.(12.32)

электрон будет двигаться по окружности радиусом

Уравнение движения электрона в магнитном поле.(12.33)

В результате сложения этих двух движений электрон будет двигаться по винтовой линии радиусом R и шагом винта h:

где T – период движения по окружности:

Уравнение движения электрона в магнитном поле.(12.35)

Таким образом получаем, что шаг винта будет равен:

Уравнение движения электрона в магнитном поле.(12.36)

1. Как будет двигаться заряженная частица, влетевшая в однородное магнитное поле под углом в вектору Уравнение движения электрона в магнитном полеотличным от нуля и л/2?

2. Если заряженная частица, пролетая некоторую область про-­
странства, не отклоняется от первоначального направления движения, можно ли утверждать, что магнитное поле в этой области пространства отсутствует?

3. Протон и электрон, имеющие одинаковую скорость, попадают в однородное магнитное поле, индукция которого В перпендику­лярна скорости зарядов. Как будут отличаться траектории заряжен­ных частиц?

4. Чему равна работа силы, действующей на электрон, движущийся в однородном магнитном поле с индукцией В?

5. Покажите, что какой бы скоростью ни обладал электрон, влетающий в однородное магнитное поле с индукцией В, и каков бы ни был угол α между векторами Уравнение движения электрона в магнитном полеи Уравнение движения электрона в магнитном поле, время Т, за которое он опишет виток винтовой линии, будет одним и тем же.

6. Какова форма траектории электрона, движущегося в сов­падающих по направлению электрическом и магнитном полях, в случаях, когда: 1) начальная скорость электрона направлена вдоль полей, 2) скорость электрона перпендикулярна к Е и В?

7. Можно ли определить, каким полем вызвано отклонение пуч­ка протонов, попавшего в некоторую область пространства, – электрическим или магнитным?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: «Что-то тут концом пахнет». 8526 – Уравнение движения электрона в магнитном поле| 8113 – Уравнение движения электрона в магнитном полеили читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Видео:Движение электронов в магнитном поле - Сила ЛоренцаСкачать

Движение электронов в магнитном поле - Сила Лоренца

§14. Движение заряженных частиц в электрическом и магнитном полях

14.3 Движение по винтовой линии в однородном магнитном поле.

Рассмотрим теперь произвольный случай движения заряженной частицы в однородном магнитном поле.

Уравнение движения электрона в магнитном поле

Введем систему декартовых координат, так, чтобы вектор индукции однородного магнитного поля (

vec B) был направлен вдоль оси Oz (рис. 97). Пусть вектор скорости (

vec upsilon_0) частицы массы m, имеющей электрический заряд q, направлен под произвольным углом α к вектору индукции поля. Разложим этот вектор на две составляющих[

vec upsilon_1] – параллельную вектору индукции и (

vec upsilon_2) – перпендикулярную ему. Действующая на частицу сила Лоренца (

vec F_L) перпендикулярна векторам скорости и индукции, то есть лежит в плоскости xOy. Модуль этой силы равен

F_L = q upsilon_0 B sin alpha = q upsilon_2 B) . (1)

Если спроецировать уравнение второго закона Ньютона для частицы

m vec a = q vec upsilon imes vec B) , (2)

на плоскость xOy, то получим уравнение, в которое только компонента скорости, перпендикулярная полю. Это уравнение описывает движение частицы, движущейся перпендикулярно вектору индукции, которое было подробно рассмотрено ранее. Оно представляет собой равномерное движение по окружности радиуса

и угловой скоростью

не зависящими, ни от модуля скорости частицы, ни от ее направления.

Проекция магнитной силы на ось Oz равна нулю, поэтому проекция скорости на эту остается постоянной. Следовательно, эта координата изменяется по линейному закону

z = z_0 + upsilon_1 t = z_0 + upsilon_0 t cos alpha) . (6)

Таким образом, движение частицы можно представить в виде суперпозиции равномерного движения вдоль оси Oz и равномерного движения по окружности в перпендикулярной плоскости. Траекторией этого движения является винтовая линия, радиус которой определяется формулой (3), а шаг рассчитывается по формуле

h = upsilon_1 t = 2 pi frac cos alpha) . (7)

Таким образом, заряженные частицы движутся по спиралям (точнее винтовым линиям), навивающимся на силовые линии магнитного поля. Такой же характер движения сохраняется и в неоднородном магнитном поле – частицы движутся по спиралям, навивающимся на силовые линии поля, при этом радиус и шаг спирали плавно изменяются с изменением индукции поля. Направление смещения (дрейфа) частиц в магнитном поле определяется направлением начальной скорости частиц и не зависит ни от знака заряда частицы, ни от направления вектора индукции поля, последние определяют только направление вращения вокруг силовой линии. Такое движение заряженных частиц позволяет конструировать различные «магнитные ловушки» для накопления заряженных частиц, управлять движением сильно ионизованного газа (плазмы). Аналогичный характер имеет движение заряженных частиц и в магнитном поле Земли.

🎦 Видео

Сила ЛоренцаСкачать

Сила Лоренца

Электрон в магнитном полеСкачать

Электрон в магнитном поле

Теория движения заряженных частиц в электрическом поле .Часть 1Скачать

Теория движения заряженных частиц в электрическом поле .Часть 1

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

55. Движение частиц в электромагнитных поляхСкачать

55. Движение частиц в электромагнитных полях

Движение электрона в магнитном поле.Скачать

Движение электрона в магнитном поле.

Лучшая модель атома? [Минутка физики]Скачать

Лучшая модель атома? [Минутка физики]

Движение заряженной частицы в магнитном поле 2021-1Скачать

Движение заряженной частицы в магнитном поле    2021-1

Движение заряженных частиц в магнитном полеСкачать

Движение заряженных частиц в магнитном поле

Физика - Магнитное полеСкачать

Физика - Магнитное поле

Физика 9 класс (Урок№23 - Электромагнитное поле.)Скачать

Физика 9 класс (Урок№23 - Электромагнитное поле.)

2.5. Движение заряженных частиц в магнитном полеСкачать

2.5. Движение заряженных частиц в магнитном поле

Движение электрона в электрическом и магнитном полеСкачать

Движение электрона в электрическом и магнитном поле

Движение заряда по спирали в магнитном полеСкачать

Движение заряда по спирали в магнитном поле

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. Техноскул

Пучок электронов в магнитном полеСкачать

Пучок электронов в магнитном поле

Билеты №25, 26 "Движение зарядов в поле"Скачать

Билеты №25, 26 "Движение зарядов в поле"
Поделиться или сохранить к себе: