Уравнение для расчета эдс гальванического элемента

Задачи к разделу Электродные процессы, Гальванический элемент

В настоящем разделе представлены типовые задачи на гальванические элементы: Определение ЭДС гальванического элемента, составление схемы гальванического элемента, определение энергии химической реакции в кДж.

Задача 1. Вычислите значение э.д.с. гальванического элемента:

(-) Mg / MgSO4 // CuSO4 / Cu (+)

Напишите процессы на аноде и катоде, реакцию, генерирующую ток, и определите в кДж энергию химической реакции, превращающуюся в электрическую.

Решение.

Дана схема гальванического элемента, из которой видно, что анодом является магний, а катодом — медь

(-) Mg / MgSO4 // CuSO4 / Cu (+)

А: Mg 0 -2e — = Mg 2+

К : Cu 2+ +2e — = Cu

Mg 0 + Cu 2+ = Mg 2+ + Cu

Вычислим ЭДС гальванического элемента:

ЭДС =0,337 + 2,37 = 2,71 В

ΔG 0 298 = -nFE = -2∙96500∙2,71 = — 523030 Дж = — 523 кДж

Задача 2. Рассчитайте ЭДС гальванического элемента, составленного из стандартного водородного электрода и свинцового электрода, погруженного в 0,01 М раствор PbCl2. На каком электроде идёт процесс окисления, а на каком — восстановление?

Решение.

В данной паре потенциал свинца имеет более отрицательное значение, поэтому анодом является свинец:

А: Pb 0 -2e — = Pb 2+

К: 2 H + +2 e — = H 2

Pb 0 + 2H + = Pb 2+ + H2

Определим электродный потенциал свинца:

E = -0,126 + (0,059/2)∙lg0,01 = -0,185 В

Вычислим ЭДС гальванического элемента:

ЭДС = 0 + 0,185 = 0,185 В

Задача 3. По уравнению токообразующей реакции составьте схему гальванического элемента:

Ni + СuSO4 = NiSO4 + Cu Напишите уравнения анодного и катодного процессов. Рассчитайте стандартную ЭДС.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Ni2+/Ni и E 0 Cu2+/Cu

В данной паре потенциал никеля имеет более отрицательное значение, поэтому анодом является никель:

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции:

ЭДС = 0,337 – (- 0,250) = 0,587 В

Задача 4. Составьте схему гальванического элемента из магния и свинца, погруженных в растворы их солей с концентрацией ионов:

[Mg 2+ ] = 0,001 моль/л, [Pb 2+ ] = 1 моль/л. Напишите уравнения реакций, протекающих на катоде и аноде. Рассчитайте стандартную ЭДС этого элемента.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg и E 0 Pb2+/Pb

В данной паре потенциал магния имеет более отрицательное значение и является анодом:

А: Mg 0 -2e — = Mg 2+

К: Pb 2+ +2 e — = Pb 0

Mg 0 + Pb 2+ = Mg 2+ + Pb 0

Составим схему гальванического элемента:

(-) Mg 0 |Mg 2+ || Pb 2+ |Pb 0 (+)

Применяя уравнение Нернста, найдем EPb2+/Pb и EMg2+/Mg заданной концентрации:

Рассчитаем стандартную ЭДС реакции

ЭДС = -0,126 – (-2,46) = 2,334 В

Задача 5. Как изменится (увеличится, уменьшится) или останется постоянной масса пластины из кобальта, погруженной в раствор, содержащий соли Fe (II), Mg, Ag (I). Напишите молекулярные уравнения реакций.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg, E 0 Co2+/Co, E 0 Fe2+/Fe, E 0 Ag+/Ag

Протекание реакции возможно при условии, когда E 0 восст 0 ок.

В нашем случае восстановителем является кобальт и условие E 0 восст 0 ок соблюдается только для пары

Co 0 + Ag + = Co 2+ + Ag 0

Молекулярное уравнение, например:

В процессе пластина из кобальта будет растворяться, но одновременно на ее поверхности будет осаждаться серебро.

Из уравнения реакции видно, что при взаимодействии 1 моль кобальта, образуется 2 моль серебра.

Мольная масса кобальта M(Co) = 59 г/моль, мольная масса серебра M(Ag) = 108 г/моль.

Найдем массы металлов:

n = m/M, m = n∙M

m(Ag) = 2∙108 = 216 г.

Таким образом, масса осажденного серебра больше, чем масса растворенного кобальта, т.е. масса пластины из кобальта увеличится.

В случаях, когда пластина опущена в раствор соли железа или соли магния ее масса не изменится, т.к. кобальт не вытесняет эти металлы из их солей. Т.е. реакции не происходит и масса пластины остается неизменной.

Задача 6. Составьте схему гальванического элемента, уравнения полуреакций анодного и катодного процессов, молекулярное уравнение реакции, проходящей при работе гальванического элемента, анодом которого является никель. Подберите материал для катода. Рассчитайте стандартную ЭДС этого гальванического элемента.

Решение.

По условию задачи материал анода известен – никель. Электродный потенциал анода всегда имеет более отрицательное значение, т.е. анод состоит из более активного металла, чем катод.

Поэтому нам надо подобрать такой металл, значение потенциала которого, будет иметь большее значение, чем значение электродного потенциала никеля. Например, медь:

Составим уравнения полуреакций анодного и катодного процессов и молекулярное уравнение реакции, проходящей при работе гальванического элемента.

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции

Видео:Гальванические элементы. 1 часть. 10 класс.Скачать

Гальванические элементы. 1 часть. 10 класс.

КАК РАССЧИТАТЬ ЭДС ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА

Уравнение для расчета эдс гальванического элемента

Э.Д.С. гальванического элемента определяется по формуле, применение которой рассмотрим в данной статье.

Гальванический элемент является прибором, который позволяет при посредстве химической реакции получить электрическую энергию. А происходит это потому, что один металл готов отдать свои электроны другому, тот же, в свою очередь, их принять.

Но что обеспечивает такую готовность, какая сила заставляет эти электроны перемещаться?

Для сравнения способности одного металла отдавать свои электроны другому измеряют и рассчитывают электродвижущую силу (обозначим ее как Э.Д.С.)

Видео:Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.Скачать

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.

Что такое Э.Д.С. и от чего она зависит

Сила, позволяющая перемещаться электронам по цепи в гальваническом элементе, называется электродвижущей силой (E) , которая в данном случае означает то же, что и напряжение, и потенциал. Поэтому Э.Д.С. измеряется в вольтах.

Вспомним, что 1 вольт (В) представляет собой электродвижущую силу, которая позволяет заряду в 1 кулон (Кл) приобрести энергию в 1 джоуль (Дж).

ЭДС гальванического элемента определяется многими факторами:

— проводимым в элементе химическим процессом;

— концентрацией участников процесса (как реагентов, так и продуктов);

Если гальванический элемент работает в стандартных условиях, то его Э.Д.С. называется стандартной и обозначается Е°.

Видео:Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.Скачать

Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.

Стандартные электродные потенциалы

Еще со времен Галилея известно, что все в мире относительно. С тех пор любые события, процессы и явления мы можем рассматривать относительно других событий, процессов или явлений.

Чтобы понять, какова же Э.Д.С. конкретного металла, нужно сравнить ее с такой Э.Д.С., величина которой нам наверняка известна. Для этого был составлен гальванический элемент с газообразным водородом в качестве электрода.

Как устроен и как работает гальванический элемент с водородным электродом

Значение потенциала водородного электрода, с которым будут сравниваться величины измеряемых потенциалов электродов гальванического элемента, условно принимается на ноль.

Конечно же сам водород подключить к цепи мы не можем, так как это газообразное вещество.

Уравнение для расчета эдс гальванического элемента

Итак, в цепь включена тонкая платиновая Pt пластинка, имеющая дополнительное покрытие из платины, осажденной на ее поверхности электролитическим путем. Здесь адсорбируется газообразный водород, который дополнительно удерживается стеклянной колбой. Последняя же заполнена электролитом: 2н. раствором серной кислоты H2SO4. Кроме того, сюда из баллона подается водород H2.

Вторая часть гальванического элемента, как обычно, представлена цинковой пластинкой (анод), погруженной в раствор соли этого же металла, например, сульфата цинка ZnSO4 . Электроны анода после замыкания цепи переходят в катодное пространство и обеспечивают там восстановление ионов водорода H + :

Уравнение для расчета эдс гальванического элемента

Схематично рассмотренный гальванический элемент записывают так:

Уравнение для расчета эдс гальванического элемента

После замыкания цепи стрелка прибора покажет величину потенциала 0,76 В.

ЭДС гальванического элемента с водородным электродом

Итак. Стрелка вольтметра остановилась на значении 0,76 В. Это и есть величина Э.Д.С. гальванического элемента, устройство которого мы рассмотрели.

Поскольку в гальваническом элементе всегда одновременно протекают два противоположных процесса: окисление и восстановление, то Э.Д.С. элемента будет представлена суммой двух потенциалов: окислительного и восстановительного соответственно

Уравнение для расчета эдс гальванического элемента

Уравнение для расчета эдс гальванического элемента

Поскольку в ходе процесса окисляется цинк, посчитанное (и измеренное) значение Э.Д.С. будет относиться не столько ко всему элементу, сколько к цинковому аноду.

Именно таким же образом, имея в распоряжении стандартный водородный электрод, были получены значения других стандартных электродных потенциалов.

Э.Д.С. гальванического элемента определяется по формуле, учитывающей электродные потенциалы участников процесса

Возможны случаи, когда электрод в одном гальваническом элементе является анодом, а в другом (в паре с другим металлом) катодом. Иными словами, в зависимости от ситуации он может как окисляться, так и восстанавливаться. Какой же электродный потенциал будет иметь металл?

В таких ситуациях работает правило:

потенциалы окислительного и восстановительного процессов имеют одинаковое численное значение и противоположны по знаку

Например, для цинка:

Уравнение для расчета эдс гальванического элемента

Важно отметить, что в справочных таблицах стандартных электродных потенциалов принято отображать только восстановительные процессы. Поэтому, если электрод, значение Э.Д.С. которого вам надо взять из такой таблицы, является участником окислительного процесса, вы находите в ней значение Э.Д.С. для него, как для участника восстановительного процесса, и меняете знак на противоположный.

Итак, в самом общем случае Э.Д.С. гальванического элемента определяется по формуле:

Уравнение для расчета эдс гальванического элемента

Необходимо учесть, что

Э.Д.С. гальванического элемента всегда положительна

Определим Э.Д.С. гальванического элемента, состоящего из медного и цинкового электродов, погруженных в растворы их солей:

Уравнение для расчета эдс гальванического элемента

Для вычисления воспользуемся справочной таблицей стандартных электродных потенциалов металлов и формулой для расчета Э.Д.С., учитывая, что из двух значений потенциалов, меньшее будет соответствовать окислительным процессам на аноде, а большее – восстановительным процессам на катоде.

По данным таблицы восстановительный потенциал цинка равен -0,763 В. В данном процессе цинк окисляется, значит, его окислительный потенциал составляет +0,763 В. Медь восстанавливается, ее потенциал равен +0,337 В.

Уравнение для расчета эдс гальванического элемента

Ряд напряжений металлов. Что это такое и каково его значение

Если измерить указанным выше образом значения стандартных электродных потенциалов металлов и расположить их в порядке возрастания, то получится знаменитый ряд напряжений металлов (не совсем верный термин). Лучше его называть рядом стандартных электродных потенциалов металлов. Он имеет еще несколько названий: электрохимический ряд активности металлов, ряд Бекетова. В нем кроме металлов присутствует единственный неметалл водород. Надеемся, теперь понятно, почему.

Li Rb K Cs Ba Sr Ca Na Mg Be Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Cu Hg Ag Pt Au

Каково же значение данного ряда?

По величинам стандартных электродных потенциалов можно предположить, насколько ярко выражены те или иные свойства соответствующих металлов:

1) Чем меньше величина потенциала, тем более активным является металл . Так, ряд начинается литием. Величина его потенциала Е°=-3,045 В. Это самое маленькое значение среди всех остальных. И действительно, литий очень активный металл. Он легко окисляется и трудно восстанавливается из своего иона.

2) Все металлы, стоящие в данном ряду левее водорода (т.е. имеющие отрицательное значение потенциала) вытесняют его из разбавленных кислот (кислот, подобных соляной, серной).

Уравнение для расчета эдс гальванического элемента

3) Каждый предыдущий металл ряда вытесняет все последующие из растворов их солей. Например:

Уравнение для расчета эдс гальванического элемента

Этот вывод можно подтвердить расчетами:

Уравнение для расчета эдс гальванического элемента

А вот такая реакция не возможна:

Уравнение для расчета эдс гальванического элемента

И это также легко подтверждается вычислением Э.Д.С. предполагаемого окислительно-восстановительного процесса:

Уравнение для расчета эдс гальванического элемента

Полученное отрицательное значение Э.Д.С. говорит о том, что переход электронов с меди на железо не возможен.

4) Если построить из металлов данного ряда гальванический элемент, то его Э.Д.С. будет тем больше, чем больше разность стандартных электродных потенциалов этих металлов.

Например, какой окислительно-восстановительный процесс будет идти эффективнее: вытеснение железа из его соли магнием или цинком? Для ответа на этот вопрос необходимо посчитать Э.Д.С. обоих процессов и сравнить полученные значения:

Уравнение для расчета эдс гальванического элемента

В обоих случаях Э.Д.С. положительна. Значит, процессы возможны. Однако, взаимодействие сульфата железа (II) с магнием более эффективно, чем с цинком почти в 6 раз.

Уравнение для расчета эдс гальванического элемента

Видео:Использование таблиц потенциалов и расчет ЭДС реакции. Продукты в ОВР. Ч.5-1.Скачать

Использование таблиц потенциалов и расчет ЭДС реакции. Продукты в ОВР. Ч.5-1.

Примеры вычислений Э.Д.С. гальванического элемента и электродных потенциалов

Разберем еще несколько примеров, в которых применяется формула, по которой определяется Э.Д.С. гальванического элемента.

Задача 1. Рассчитайте, будет ли протекать реакция при погружении пластинки железа в 1М раствор сульфата никеля.

Уравнение для расчета эдс гальванического элемента

Так как значение Э.Д.С. предполагаемой окислительно-восстановительной реакции положительное, то такая реакция возможна.

Задача 2. Рассчитайте Э.Д.С., укажите направление движения электронов в имеющейся комбинации электродов:

Уравнение для расчета эдс гальванического элемента

Уравнение для расчета эдс гальванического элемента

Окисляется свинцовый Pb анод, его электроны будут переходить на серебряный Ag катод.

Задача 3. Подтвердите расчетом, будет ли металлический никель растворяться: а) в 2М растворе серной кислоты; б) в растворе сульфата калия с той же активностью ионов.

Уравнение для расчета эдс гальванического элемента

Задача 4. Определите возможность протекания в водном растворе реакции между хлором и хлоридом железа (II).

Уравнение для расчета эдс гальванического элемента

Задача 5. Вычислите стандартную Э.Д.С. гальванического элемента, в котором протекает реакция:

Уравнение для расчета эдс гальванического элемента

Уравнение для расчета эдс гальванического элемента

Важный вывод из этой задачи:

значение Э.Д.С. гальванического элемента зависит от концентраций участников окислительно-восстановительного процесса, но не зависит от их количеств.

Количество вещества йода, которое мы умножили в окислительной полуреакции на три для соблюдения электронного баланса, не имеет значения, и поэтому величину стандартного электродного потенциала этой полуреакции на три умножать не нужно. Так же поступают во всех подобных случаях.

Таким образом, ЭДС гальванического элемента определяется по формуле, учитывающей значения стандартных электродных потенциалов. Она позволяет определить эффективность окислительно-восстановительного процесса, как в гальваническом элементе, так и при взаимодействии металла с раствором соли другого металла.

Видео:Гальванический элементСкачать

Гальванический элемент

Как рассчитать ЭДС гальванического элемента

Видео:Гальванические элементы. Практическая часть. 10 класс.Скачать

Гальванические элементы. Практическая часть. 10 класс.

Решение задач на составление схемы гальванического элемента

Задание 251.
При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один никелевый электрод находится в 0,001 М растворе, а другой такой же электрод — в 0,01 М растворе сульфата никеля. Ответ: 0,0295 В.
Решение:
Гальванический элемент, электроды которого сделаны из одного и того же металла будет работать при условии, что электроды будут опущены в растворы солей с разной концентрацией. Схема гальванического элемента, в котором один никелевый электрод находится в 0,001М растворе, а другой – в 0,01М растворе сульфата никеля имеет вид:

Уравнение для расчета эдс гальванического элемента

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Уравнение для расчета эдс гальванического элемента

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность).

Определим электродные потенциалы никелевых электродов при разных концентрациях ионов серебра Ni 2+ , получим:

Уравнение для расчета эдс гальванического элемента

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Уравнение для расчета эдс гальванического элемента

Ответ: 0,0295 В.

Задание 252.
Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [Рb 2+ ] = [Мg 2+ ] = 0,01 моль/л. Изменится ли ЭДС этого элемента, если концентрацию каждого из ионов увеличить в одинаковое число раз? Ответ: 2,244 В.
Решение:
Схема гальванического элемента

Уравнение для расчета эдс гальванического элемента

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки — границу раздела двух жидких фаз — пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (—2,37 В) и является анодом, на котором протекает окислительный процесс:

Мg 0 — 2 Уравнение для расчета эдс гальванического элемента= Mg 2+ (1)

Свинец, потенциал которой -0,127 В — катод, т.е. электрод, на котором протекает восстановительный процесс:

Pb 2+ + 2 Уравнение для расчета эдс гальванического элемента= Pb 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg 0 + Pb 2+ = Mg 2+ + Pb 0

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Уравнение для расчета эдс гальванического элемента

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность). Определим электродные потенциалы кадмия и меди при заданных концентрациях:

Уравнение для расчета эдс гальванического элемента

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Уравнение для расчета эдс гальванического элемента

Если концентрацию каждого из ионов Mg 2+ и Pb 2+ увеличить в одинаковое число раз, то ЭДС гальванического элемента не изменится, так как при этом соответственно будут уменьшаться численные значения потенциалов металлов, а разница между значениями их не изменится. Например, при увеличении концентрации ионов в 100 раз концентрация их примет значения 1 моль/л, а потенциалы электродов станут равными стандартным потенциалам металлов, то ЭДС = -0,127 – (-2,37) = 2,243 В.

Ответ: 2,243 В.

Задание 253.
Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.
Решение:
а) Схема гальванического элемента, в котором никель является катодом:

Уравнение для расчета эдс гальванического элемента

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки — границу раздела двух жидких фаз — пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (-2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg 0 — 2 Уравнение для расчета эдс гальванического элемента= Mg 2+ (1)

Никель, потенциал которой -0,25 В — катод, т.е. электрод, на котором протекает восстановительный процесс:

Ni 2+ + 2 Уравнение для расчета эдс гальванического элемента= Ni 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg 0 + Ni 2+ = Mg 2+ + Ni 0

б) Схема гальванического элемента, в котором никель является анодом:

Уравнение для расчета эдс гальванического элемента

Никель имеет меньший потенциал (-0,25 В) и является анодом, на котором протекает окислительный процесс:

Ni 0 — 2 Уравнение для расчета эдс гальванического элемента= Ni 2+ (1)

Медь, потенциал которой (+0,34 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:

Сu 2+ + 2 Уравнение для расчета эдс гальванического элемента= Сu 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Задание 254.
Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде.
Решение:
Стандартные электродные потенциалы железа и серебра соответственно равны -0,44 В и +0,80 В. Исходя из того, что железо имеет более электроотрицательный потенциал, чем водород 0,00 В, то между железом и раствором серной кислоты проходит реакция (железо вытесняет водород из кислоты), и железная пластинка при этом будет уменьшаться по массе:

Исходя из того, что серебро имеет более электроположительный потенциал, чем водород, то между серебром и раствором серной кислоты реакция не проходит. Но так как железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты, то между ними будет проходить окислительно-восстановительный процесс, в котором железная пластина будет анодом, а серебряная – катодом.

На аноде протекает процесс:

Fe 0 → Fe 2+ + 2 Уравнение для расчета эдс гальванического элемента

На катоде серебряной пластинке будут разряжаться ионы водорода:

2Н + + 2 Уравнение для расчета эдс гальванического элемента→ Н20

(-) Fe | Fe 2+ || 2H + | H2, Ag ( + )

Задание 255.
Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией [Мg 2+ ] = [Cd 2+ ] = 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить до 0,01 моль/л? Ответ: 1,967 В.
Решение:
Магний имеет меньший потенциал (-2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg 0 — 2 Уравнение для расчета эдс гальванического элемента= Mg 2+ (1)

Кадмий, потенциал которой (-0,403 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:

Cd 2+ + 2 Уравнение для расчета эдс гальванического элемента= Cd 0 (2)

Уравнение для расчета эдс гальванического элемента

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Уравнение для расчета эдс гальванического элемента

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность). Определим электродные потенциалы кадмия и меди при заданных концентрациях:

Уравнение для расчета эдс гальванического элемента

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Уравнение для расчета эдс гальванического элемента

Рассчитаем электродные потенциалы магния и кадмия при концентрации их ионов в растворе равной 0,01 моль/л:

Уравнение для расчета эдс гальванического элемента

Уравнение для расчета эдс гальванического элемента

Таким образом, ЭДС гальванического элемента при равном уменьшении концентрации ионов металлов в их растворах не изменяется.

🔍 Видео

Разбор схемы гальванического элементаСкачать

Разбор схемы гальванического элемента

Электрохимия. Гальванический элемент Даниэля-ЯкобиСкачать

Электрохимия. Гальванический элемент Даниэля-Якоби

Составление схемы и вычисление ЭДС гальванического концентрационного элемента | Уравнение НернстаСкачать

Составление схемы и вычисление ЭДС гальванического концентрационного элемента | Уравнение Нернста

Гальванические элементы. 2 часть. 10 класс.Скачать

Гальванические элементы. 2 часть. 10 класс.

Гальванический элементСкачать

Гальванический элемент

Гальванические элементыСкачать

Гальванические элементы

Электроды и гальванические элементыСкачать

Электроды и гальванические элементы

Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Электрохимический ряд потенциалов. 1 часть. 10 класс.Скачать

Электрохимический ряд потенциалов. 1 часть. 10 класс.

Лабораторная работа "Гальванический элемент"Скачать

Лабораторная работа "Гальванический элемент"

Гальванические элементы. 10 класс.Скачать

Гальванические элементы. 10 класс.

Уравнение Нернста. Условия изменения направления ОВР. Продукты в ОВР. Ч.5-3.Скачать

Уравнение Нернста. Условия изменения направления ОВР. Продукты в ОВР. Ч.5-3.

Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать

Урок 4. Расчет цепей постоянного тока. Законы Кирхгофа

ОВР часть 2. Окислительно-восстановительные реакции. Электродный потенциал.Скачать

ОВР часть 2. Окислительно-восстановительные реакции. Электродный потенциал.
Поделиться или сохранить к себе: