Уравнение длины отрезка в полярных координатах

Полярные координаты — определение и вычисление с примерами решения

Содержание:

Видео:Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Полярные координаты. параметрические уравнения линии

Полярные координаты

Основная идея метода координат состоит в том, что положение точки на плоскости однозначно определяется с помощью двух чисел. Конкретный геометрический смысл этих чисел дает ту или иную систему координат. Наиболее важной после прямоугольной системы, исключительно употреблявшейся нами до сих пор, является полярная система координат, к рассмотрению которой мы и переходим.

Возьмем на плоскости точку О, которую назовем полюсом. Проведем из полюса О направленную полупрямую Ох, называемую полярной осью (рис. 41).

Уравнение длины отрезка в полярных координатах

Пусть М — произвольная точка плоскости. Соединим точку М с полюсом О отрезком ОМ. Длина отрезка ОМ = р называется полярным радиусом точки М, а угол Уравнение длины отрезка в полярных координатах

Точка М с полярными координатами риф записывается следующим образом: М (р, ф), причем на первом месте ставится полярный радиус р, а на втором — полярный угол ф.

Что касается значений, принимаемых полярными координатами, то достаточно, очевидно, рассматривать значения р от 0 до Уравнение длины отрезка в полярных координатахи значения ф от 0 до Уравнение длины отрезка в полярных координатах, при этом, как мы условились, угол ф отсчитывается от полярной оси против хода часовой стрелки. Однако в некоторых вопросах приходится рассматривать углы, большие Уравнение длины отрезка в полярных координатах, а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по направлению движения часовой стрелки.

Связь между прямоугольными и полярными координатами

Рассмотрим переход от полярных координат к прямоугольным и обратно.

Предположим, что полюс полярной системы совпадает с началом прямоугольной системы координат Оху, а полярная ось является положительной полуосью Ох (рис. 42).

Уравнение длины отрезка в полярных координатах

Тогда для произвольной точки М имеем

Уравнение длины отрезка в полярных координатах

Считая угол ф острым, из прямоугольного треугольника АОМ находим

Уравнение длины отрезка в полярных координатах

Полученные формулы справедливы для любого угла ф. Так выражаются прямоугольные координаты точки М через ее полярные координаты. Далее, из этого же прямоугольного треугольника АОМ получаем

Уравнение длины отрезка в полярных координатах

Так выражаются полярные координаты точки через ее прямоугольные координаты.

Заметим, что при определении полярного угла ф по tg ф нужно учитывать знаки координат х и у.

Ранее мы видели, что линии могут быть заданы с помощью уравнений, связывающих их текущие прямоугольные координаты. Покажем теперь на простейшем примере, что линии могут определяться и уравнениями относительно полярных координат.

Пример:

Рассмотрим кривую Уравнение длины отрезка в полярных координатах, где а — некоторое положительное число. Эта кривая называется спиралью Архимеда. Для ее построения составляем таблицу соответственных значений ф и р:

Уравнение длины отрезка в полярных координатахУравнение длины отрезка в полярных координатах

По этой таблице наносим точки и соединяем их линией, уточняя, если в этом есть необходимость, положение промежуточных точек (рис. 43).

Параметрические уравнения линии

Иногда бывает удобнее вместо уравнения линии, связывающего прямоугольные координаты Уравнение длины отрезка в полярных координатах, рассматривать так называемые параметрические уравнения линии, дающие выражения текущих координат х и у в виде функций от некоторой переменной величины t (параметра). Параметрические уравнения играют важную роль, например, в механике, где координаты х и у движущейся точки М (х, у) рассматриваются как функции времени (уравнения движения).

Пример:

Выведем параметрические уравнения окружности.

Пусть М Уравнение длины отрезка в полярных координатах— произвольная точка окружности радиуса R с центром в начале координат (рис. 44). В определяемом ею прямоугольном треугольнике АОМ обозначим угол хОМ через t. Тогда, очевидно, будут иметь место равенства

Уравнение длины отрезка в полярных координатахУравнение длины отрезка в полярных координатах

Это и есть параметрические уравнения окружности.

Чтобы получить обычное уравнение окружности, нужно исключить параметр t. Для этого возводим уравнения (1) в квадрат и складываем их:

Уравнение длины отрезка в полярных координатах

Пример:

Выведем параметрические уравнения эллипса.

Эллипс с полуосями а и b можно рассматривать как равномерно сжатую вдоль вертикального диаметра окружность радиуса а, где коэффициент сжатия k = b/a. Пусть М (х, у) — точка эллипса, N (X, У) — соответствующая точка окружности (рис. 45), где

Уравнение длины отрезка в полярных координатах

Уравнение длины отрезка в полярных координатахЗа параметр t примем угол, образованный радиусом ON окружности с положительным направлением оси Ох: Уравнение длины отрезка в полярных координатах. Используя формулы (2), имеем

Уравнение длины отрезка в полярных координатах

Таким образом, параметрические уравнения эллипса с полуосями а и b есть

Уравнение длины отрезка в полярных координатахИсключив из уравнений (3) параметр получим каноническое уравнение эллипса

Уравнение длины отрезка в полярных координатах

Имея параметрические уравнения линии, можно по точкам построить ее.

Пример:

Уравнение длины отрезка в полярных координатах

Решение:

Составляем таблицу значений:

Уравнение длины отрезка в полярных координатах Уравнение длины отрезка в полярных координатахНанося точки с соответствующими координатами (х, у) на плоскость Оху и соединяя их линией, получим искомую кривую (рис. 46).

Эта кривая— парабола. В самом деле, исключив параметр t из уравнений (4), получим Уравнение длины отрезка в полярных координатахт. е. каноническое уравнение параболы.

Параметрические уравнения циклоиды

Определение: Циклоидой называется кривая, описываемая точкой окружности, катящейся без скольжения по прямой линии (рис. 47).

Выведем параметрические уравнения циклоиды, приняв прямую за ось Ох, предполагая, что радиус катящейся окружности равен айв начальном положении движущаяся точка М совпадает с началом координат. За параметр t примем угол поворота (в радианах) подвижного радиуса МС окружности относительно вертикального радиуса КС, где К — точка касания окружности с осью Ох (рис. 47). Так как качение окружности происходит без скольжения, то, очевидно, имеем

Уравнение длины отрезка в полярных координатах

Уравнение длины отрезка в полярных координатах

Отсюда на основании рис. 47 для координат текущей точки М циклоиды получаем следующие выражения:

Уравнение длины отрезка в полярных координатах

Таким образом, параметрические уравнения циклоиды есть

Уравнение длины отрезка в полярных координатах

Полярная система координат

Определение 1. Рассмотрим плоскость с прямоугольной декартовой системой координат Оху . Пусть М(х, у) – точка на плоскости, M ≠ 0. Полярными координатами точки М называются числа r − длина ее радиус-вектора (полярный
радиус) и ϕ − угол, образованный радиус-вектором с положительным направлением оси Ох (полярный угол), Уравнение длины отрезка в полярных координатах. Точка О при этом называется
полюсом, а полуось Ох – полярной осью.
Замечание. Зависимость между прямоугольными (х, у) и полярными ( , ) r ϕ
координатами точки М задается в виде: Уравнение длины отрезка в полярных координатах(1)

Уравнение длины отрезка в полярных координатах

Рис.1. Полярные координаты точки.
Полярный полюс О и полярную ось можно выбрать на плоскости и не вводя
прямоугольную систему координат:

Уравнение длины отрезка в полярных координатах

Пример 1.

Построим на плоскости линию, заданную уравнением:
Уравнение длины отрезка в полярных координатах− лемниската.
Решение.

Уравнение длины отрезка в полярных координатах
Вычислим значения r при различных значениях ϕ :
Уравнение длины отрезка в полярных координатах
Проводим лучи из начала координат под углами ϕ к оси Ох и на них откладываем
отрезки длины r , получим :

Уравнение длины отрезка в полярных координатах
Рис.3. Лемниската Уравнение длины отрезка в полярных координатах

Пример 2.

а) Построим кривую Уравнение длины отрезка в полярных координатах− кардиоида. Рассуждая, как в примере 1 получим:
Уравнение длины отрезка в полярных координатах
Уравнение длины отрезка в полярных координатах
Уравнение длины отрезка в полярных координатах
Уравнение длины отрезка в полярных координатах
Замечание. Если в определении 1 отбросить требование 0 ≤ ϕ 0, то формулы (1) будут задавать непрерывное отображение точек плоскости (O, r, ϕ) на точки плоскости (x, O, y).

Уравнение длины отрезка в полярных координатах
При этом, если r > 0, то векторы Уравнение длины отрезка в полярных координатахсонаправлены, если r

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Полярная система координатСкачать

Полярная система координат

Полярная система координат (полярные координаты)

Полярная система координат на плоскости — это совокупность точки , называемой полюсом , и полупрямой , называемой полярной осью . Кроме того, задается масштабный отрезок для измерения расстояний от точек плоскости до полюса. Как правило, на полярной оси выбирается вектор , приложенный к точке , длина которого принимается за величину масштабного отрезка, а направление вектора задает положительное направление на полярной оси (рис.2.28,а).

Положение точки в полярной системе координат определяется расстоянием ( полярным радиусом ) от точки до полюса (т.е. ) и углом ( полярным углом ) между полярной осью и вектором . Полярный радиус и полярный угол составляют полярные координаты точки , что записывается в виде . Полярный угол измеряется в радианах и отсчитывается от полярной оси:

— в положительном направлении (против направления движения часовой стрелки), если значение угла положительное;

— в отрицательном направлении (по направлению движения часовой стрелки), если значение угла отрицательное.

Полярный радиус определен для любой точки плоскости и принимает неотрицательные значения . Полярный угол определен для любой точки плоскости, за исключением полюса , и принимает значения , называемыми главными значениями полярного угла . В некоторых случаях целесообразно считать, что полярный угол определен с точностью до слагаемых , где . В этом случае значениям полярного угла для всех соответствует одно и то же направление радиус-вектора.

С полярной системой координат можно связать прямоугольную систему координат , начало которой совпадает с полюсом, а ось абсцисс (точнее положительная полуось абсцисс) — с полярной осью. Ось ординат достраивается перпендикулярно оси абсцисс так, чтобы получилась правая прямоугольная система координат (рис.2.28,б). Длины базисных векторов определяются масштабным отрезком на полярной оси.

Наоборот, если на плоскости задана правая прямоугольная система координат, то, приняв положительную полуось абсцисс за полярную ось, получим полярную систему координат <связанную с данной прямоугольной).

Выведем формулы, связывающие между собой прямоугольные координаты точки , отличной от точки , и ее полярные координаты . По рис.2.28,б получаем

Эти формулы позволяют найти прямоугольные координаты по известным полярным координатам. Обратный переход выполняется по формулам:

Последние два равенства определяют полярный угол с точностью до слагаемых , где . При из них следует, что . Главное значение полярного угла находится по формулам (рис.2.29):

Пример 2.9. В полярной системе координат :

а) изобразить координатные линии ;

б) изобразить точки с полярными координатами . Найти главные значения полярных углов этих точек;

в) найти прямоугольные координаты точек .

Решение. а) Координатные линии представляют собой окружности соответствующих радиусов, а линии и — полупрямые (рис.2.30,а).

б) Построим точки и (рис.2.30,б,в). Их координаты отличаются полярным углом, однако, имеют одно и то же главное значение . Следовательно, это одна и та же точка, которая совпадает с точкой , изображенной на рис.2.30,а.

в) Учитывая пункт «б», найдем прямоугольные координаты точки . По формулам (2.17) получаем:

1. Главное значение полярного угла можно выбрать иначе, например, .

2. Расстояние между двумя точками и (длина отрезка ) вычисляется по формуле

что следует из теоремы косинусов (рис.2.31).

3. Ориентированная площадь параллелограмма (рис.2.31), построенного на радиус-векторах и , находится по формуле

Она положительна, если (при этом ориентация пары радиус- векторов и правая), и отрицательна, если varphi_2″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAEcAAAASBAMAAAD73d5oAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMAwPxBoV0BgTEhELHR4JFxAbyQhgAAASJJREFUKM9jYCAdsEYRoyqmCqvwUgYGa1E4jy3mJczQCQzLRRZAOY8ZWBUPTUCoCvSEMGYzcJ0VcoCwOQUY1jZwFyAZbegBppwZ+Bw41CBC/AFALjuyIgZrCZCJxxgmMjBAFTFO4NrAwGLAwIlQNAWkiNkB6BCgNcYgZzE2sAYw9CSYX0cYJJwAVsQmwMAdsO7LDSCHbxt3A8dlhpniMIdDncSlwbGB7SHDbwZHEOdskalTAAMDTFEM1HMMnxyda6UYPjEUgThLlJRAeqGK4MHEwHpJ6T6I9gHzvNsY4IpYkQK8yQrkNg4NMEefAaEIGXwCqWFY2ADWrIxD0UGw+yVYQRS7Gg5FYBv4gq3B8QKONzvdSnRFBmA7lRQJJx22NKDLACxqN6Lf3w5xAAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> (ориентация пары радиус-векторов и левая).

Пример 2.10. Даны полярные координаты и точек и (рис.2.32). Требуется найти:

а) скалярное произведение ;

б) длину отрезка ;

в) внешнее произведение ;

г) площадь треугольника ;

д) координаты середины отрезка в прямоугольной системе координат, связанной с данной полярной.

Решение. а) По определению скалярного произведения находим

б) Находим длину отрезка (см. пункт 2 замечаний 2.8):

в) Внешнее произведение находим как ориентированную площадь параллелограмма, построенного на векторах и :

Площадь положительная, так как векторы и образуют правую пару .

г) Площадь треугольника находим как половину площади параллелограмма, построенного на радиус-векторах и .

д) По формулам (2.17) находим прямоугольные координаты точек и :

а затем координаты середины отрезка (см. пункт 3 замечаний 2.1):

Пример 2.11. На координатной плоскости отмечена точка . Найти:

а) полярные координаты точки , образа точки при повороте радиус-вектора на угол вокруг начала координат (рис.2.33);

б) полярные координаты точки , образа точки при инверсии плоскости относительно окружности единичного радиуса с центром в начале координат (см. пример б преобразований плоскости в разд. 2.2.4).

Решение. а) Найдем полярные координаты точки . По формулам (2.17), учитывая рис.2.29, получаем:

так как точка лежит в четверти.

При повороте радиус-вектора вокруг полюса на угол полярный радиус не изменяется, а полярный угол увеличивается. Следовательно, полярные координаты точки : , , причем — главное значение полярного угла .

б) При инверсии относительно окружности радиуса полярные координаты образа выражаются через полярные координаты прообраза следующими формулами:

Поэтому, учитывая пункт «а», находим (для ):

Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

4.4. Уравнение линии в полярных координатах

По существу, уравнение линии в полярной системе координат представляет собой функцию полярного радиуса Уравнение длины отрезка в полярных координатахот полярного угла (аргумента). При этом полярный угол учитывается в радианах (!) и непрерывно принимает значения от Уравнение длины отрезка в полярных координатахдо Уравнение длины отрезка в полярных координатах(иногда следует рассмотреть до бесконечности, или же в ряде задач для удобства от Уравнение длины отрезка в полярных координатахдо Уравнение длины отрезка в полярных координатах). Каждому значению угла «фи», которое входит в область определения функции Уравнение длины отрезка в полярных координатах, соответствует единственное значение полярного радиуса.

Полярную функцию можно сравнить со своеобразным радаром – когда луч света, исходящий из полюса, вращается против часовой стрелки и «прорисовывает» линию.

«Дежурным» примером полярной кривой является Архимедова спираль Уравнение длины отрезка в полярных координатах. На следующем рисунке изображен её первый виток – когда полярный радиус вслед за полярным углом принимает значения от 0 до Уравнение длины отрезка в полярных координатах:
Уравнение длины отрезка в полярных координатахДалее, пересекая полярную ось в точке Уравнение длины отрезка в полярных координатах, спираль продолжит раскручиваться, бесконечно далеко удаляясь от полюса. Но подобные случаи на практике встречаются довольно редко; более типичная ситуация, когда на всех последующих оборотах мы «пройдёмся по той же самой линии», которая получена в диапазоне Уравнение длины отрезка в полярных координатах.
В первом же примере мы сталкиваемся и с понятием области определения полярной функции: поскольку полярный радиус неотрицателен Уравнение длины отрезка в полярных координатах, то отрицательные углы у функции Уравнение длины отрезка в полярных координатахрассматривать нельзя.

! Примечание: в ряде случаев принято использовать обобщённые полярные координаты, где радиус может быть отрицательным, и такой подход мы вкратце изучим чуть позже

Кроме спирали Архимеда, есть множество других известных кривых, но искусством, как говорится, сыт не будешь, поэтому я подобрал примеры, которые очень часто встречаются в реальных практических заданиях.

Сначала простейшие уравнения и простейшие линии:
Уравнение длины отрезка в полярных координатах

Уравнение вида задаёт луч, исходящий из полюса. Действительно, вдумайтесь, если значение угла всегда (каким бы ни было «эр») постоянно, то какая это линия?

Примечание: в обобщённой полярной системе координат данное уравнение задаёт прямую, проходящую через полюс.

Уравнение вида Уравнение длины отрезка в полярных координатахопределяет… догадайтесь с первого раза – если для любого угла «фи» радиус остаётся постоянным? Фактически это определение окружности с центром в полюсе радиуса Уравнение длины отрезка в полярных координатах.

Например, Уравнение длины отрезка в полярных координатах. Для наглядности найдём уравнение этой линии в прямоугольной системе координат. Используя полученную ранее формулу Уравнение длины отрезка в полярных координатах, проведём замену:
Уравнение длины отрезка в полярных координатах

Возведём обе части в квадрат:
Уравнение длины отрезка в полярных координатах– уравнение окружности с центром в начале координат радиуса 2, что и требовалось проверить.

А теперь оценИте удобство – с окружностью значительно выгоднее работать именно в полярных координатах по причине предельной простоты уравнения Уравнение длины отрезка в полярных координатах.

Рассмотрим более содержательные задачи на построение:

Задача 116

Построить линию Уравнение длины отрезка в полярных координатах

Решение: в первую очередь найдём область определения. Так как полярный радиус неотрицателен, то должно выполняться неравенство Уравнение длины отрезка в полярных координатах. Можно вспомнить школьные правила решения тригонометрических неравенств, но в простых случаях как этот,
я советую более быстрый графический метод решения:

– Посмотрим на график функции Уравнение длины отрезка в полярных координатах(см. Приложение Тригонометрия). Что означает неравенство Уравнение длины отрезка в полярных координатах? Оно означает, что нас устраивает тот кусок графика, который не ниже оси абсцисс Уравнение длины отрезка в полярных координатах, а именно, его часть на отрезке Уравнение длины отрезка в полярных координатах. И, соответственно, интервал Уравнение длины отрезка в полярных координатахне подходит. Таким образом, область определения нашей функции: Уравнение длины отрезка в полярных координатах, то есть график Уравнение длины отрезка в полярных координатахрасположен справа от полюса (по терминологии декартовой системы – в правой полуплоскости).

В полярных координатах часто бывает смутное представление о том, какую линию определяет то или уравнение, поэтому чтобы её построить, необходимо найти принадлежащие ей точки – и чем больше, тем лучше. Обычно ограничиваются десятком-другим (а то и меньшим количеством). Проще всего, конечно же, взять табличные значения угла.

Для бОльшей ясности к отрицательным значениям угла я буду «прикручивать» один оборот (левая колонка), и в силу чётности косинуса Уравнение длины отрезка в полярных координатахсоответствующие положительные значения можно заново не считать (справа):
Уравнение длины отрезка в полярных координатах

Изобразим полярную систему координат и отложим найденные точки, при этом одинаковые значения «эр» удобно откладывать за один раз, делая парные засечки циркулем по рассмотренной ранее технологии:
Уравнение длины отрезка в полярных координатах
В принципе, линия отчётливо прорисовывается, но чтобы стопроцентно подтвердить догадку, давайте найдём её уравнение в декартовой системе координат. Можно применить недавно выведенные формулы Уравнение длины отрезка в полярных координатах, но я расскажу вам о более хитром приёме.

Обе части уравнения Уравнение длины отрезка в полярных координатахискусственно домножаем на «эр»: Уравнение длины отрезка в полярных координатахи используем более компактные формулы перехода:
Уравнение длины отрезка в полярных координатах

Выделяя полный квадрат, приводим уравнение к понятному виду:
Уравнение длины отрезка в полярных координатахУравнение длины отрезка в полярных координатах
Уравнение длины отрезка в полярных координатах– уравнение окружности с центром в точке Уравнение длины отрезка в полярных координатах, радиуса 2.

Коль скоро по условию требовалось просто выполнить построение и всё, плавно соединяем найденные точки линией. Ничего страшного, если получится немного неровно, вы же не обязаны были знать, что это окружность 😉

Почему мы не рассмотрели значения угла вне промежутка Уравнение длины отрезка в полярных координатах?

Ответ прост: нет смысла. Ввиду периодичности функции Уравнение длины отрезка в полярных координатахнас ждёт бесконечный «бег» по построенной окружности.

Несложно провести нехитрый анализ и прийти к выводу, что уравнение вида Уравнение длины отрезка в полярных координатахзадаёт окружность диаметра Уравнение длины отрезка в полярных координатахс центром в точке Уравнение длины отрезка в полярных координатах.

Образно говоря, все такие окружности «сидят» на полярной оси Уравнение длины отрезка в полярных координатахи обязательно проходят через полюс. Если же Уравнение длины отрезка в полярных координатах, то весёлая компания перекочует налево – на продолжение полярной оси (подумайте, почему).

Похожая задача для самостоятельного решения:

Задача 117

Построить линию Уравнение длины отрезка в полярных координатахи найти её уравнение в декартовой системе координат.

Систематизируем порядок решения задачи:

Находим область определения функции, для этого удобно посмотреть на синусоиду (Приложение Тригонометрия), чтобы сразу же понять, где синус неотрицателен.

На втором шаге рассчитываем полярные координаты точек, используя табличные значения углов; проанализируйте, нельзя ли сократить количество вычислений?

На третьем шаге откладываем точки в полярной системе координат и аккуратно соединяем их линией.

И, наконец, находим уравнение линии в декартовой системе координат.

Примерный образец решения в конце книги.

Общий алгоритм и технику построения в полярных координатах мы детализируем и существенно ускорим совсем скоро, но перед этим познакомимся ещё с одной распространённой линией:

📺 Видео

Скорость и ускорение точки в полярных координатахСкачать

Скорость и ускорение точки в полярных координатах

Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Длина отрезкаСкачать

Длина отрезка

Расстояние между двумя точками. Координаты середины отрезка.Скачать

Расстояние между двумя точками. Координаты середины отрезка.

Полярная система координатСкачать

Полярная система координат

1703 Вычисление длины линии в полярной системе координатСкачать

1703 Вычисление длины линии в полярной системе координат

Видеоурок "Полярная система координат"Скачать

Видеоурок "Полярная система координат"

Оператор Лапласа в полярных координатахСкачать

Оператор Лапласа в полярных координатах

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Координаты середины отрезка. Практическая часть. 11 класс.Скачать

Координаты середины отрезка. Практическая часть. 11 класс.

Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Лекция 22. Декартова система координат на плоскости и полярная система координат

Полярные координаты. Полярное уравнение эллипса.Скачать

Полярные координаты. Полярное уравнение эллипса.

§30 Уравнения кривых второго порядка в полярных координатахСкачать

§30 Уравнения кривых второго порядка в полярных координатах

Полярная система координат.Скачать

Полярная система координат.

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Двойной интеграл в полярных координатахСкачать

Двойной интеграл в полярных координатах

Построение графика функции в полярных координатахСкачать

Построение графика функции в полярных координатах
Поделиться или сохранить к себе: