Уравнение диссоциации серной кислоты и соляной кислоты

Уравнение диссоциации серной кислоты и соляной кислоты

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

I. Электролитическая диссоциация кислот

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода (H + )

1. Электролитическая диссоциация одноосновных кислот

Кис­ло­ты со­сто­ят не из ионов, а из мо­ле­кул.

Воз­ни­ка­ет во­прос – как же тогда кис­ло­та дис­со­ци­и­ру­ет, т. е как в кис­ло­тах об­ра­зу­ют­ся сво­бод­ные за­ря­жен­ные ча­сти­цы? Ока­зы­ва­ет­ся, ионы об­ра­зу­ют­ся в рас­тво­рах кис­лот имен­но при рас­тво­ре­нии.

Рас­смот­рим про­цесс элек­тро­ли­ти­че­ской дис­со­ци­а­ции хло­ро­во­до­ро­да в воде, но для этого за­пи­шем стро­е­ние мо­ле­кул хло­ро­во­до­ро­да и воды.

Обе мо­ле­ку­лы об­ра­зо­ва­ны ко­ва­лент­ной по­ляр­ной свя­зью. Элек­трон­ная плот­ность в мо­ле­ку­ле хло­ро­во­до­ро­да сме­ще­на к атому хлора, а в мо­ле­ку­ле воды – к атому кис­ло­ро­да. Мо­ле­ку­ла воды спо­соб­на ото­рвать ка­ти­он во­до­ро­да от мо­ле­ку­лы хло­ро­во­до­ро­да, при этом об­ра­зу­ет­ся ка­ти­он гид­рок­со­ния Н3О + .

В урав­не­нии ре­ак­ции элек­тро­ли­ти­че­ской дис­со­ци­а­ции не все­гда учи­ты­ва­ют об­ра­зо­ва­ние ка­ти­о­на гид­рок­со­ния – обыч­но го­во­рят, что об­ра­зу­ет­ся ка­ти­он во­до­ро­да.

Тогда урав­не­ние дис­со­ци­а­ции хло­ро­во­до­ро­да вы­гля­дит так:

HClH + + Cl

При дис­со­ци­а­ции од­но­го моля хло­ро­во­до­ро­да об­ра­зу­ют­ся один моль ка­ти­о­на во­до­ро­да и один моль хло­рид — ани­о­нов.

2. Электролитическя диссоциация многоосновных кислот

Многоосновные кислоты диссоциируют ступенчато.

Рас­смот­ри про­цесс элек­тро­ли­ти­че­ской дис­со­ци­а­ции сер­ной кис­ло­ты. Сер­ная кис­ло­та дис­со­ци­и­ру­ет сту­пен­ча­то, в две ста­дии.

I–я ста­дия дис­со­ци­а­ции

На пер­вой ста­дии от­ры­ва­ет­ся один ка­ти­он во­до­ро­да и об­ра­зу­ет­ся гид­ро­суль­фат-ани­он.

II — я ста­дия дис­со­ци­а­ции

На вто­рой ста­дии про­ис­хо­дит даль­ней­шая дис­со­ци­а­ция гид­ро­суль­фат — ани­о­нов.

Эта ста­дия яв­ля­ет­ся об­ра­ти­мой, то есть, об­ра­зу­ю­щи­е­ся суль­фат — ионы могут при­со­еди­нять к себе ка­ти­о­ны во­до­ро­да и пре­вра­щать­ся в гид­ро­суль­фат — ани­о­ны. Это по­ка­за­но зна­ком об­ра­ти­мо­сти.

Су­ще­ству­ют кис­ло­ты, ко­то­рые даже на пер­вой ста­дии дис­со­ци­и­ру­ют не пол­но­стью – такие кис­ло­ты яв­ля­ют­ся сла­бы­ми. На­при­мер, уголь­ная кис­ло­та Н2СО3.

Н3РО4 ↔ Н + + Н2РО4 — (первая ступень) – дигидроортофосфат ион

Н2РО — 4 ↔ Н + + НРO4 2- (вторая ступень) – гидроортофосфат ион

НРО 2- 4 ↔ Н + + PО4 З- (третья ступень) – ортофосфат ион

Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей.

II. Электролитическая диссоциация оснований

Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы (OH — )

Диссоциация амфотерных оснований (амфолитов)

Щёлочи – это основания, растворимые в воде

Это основания щелочных и щелочноземельных металлов :

LiOH, NaОН, КОН, Rb ОН, С s ОН, Fr ОН и Са(ОН)2, Sr(ОН)2, Ва(ОН)2, R а(ОН)2, а также NН4ОН

Амфолиты — это электролиты, которые при диссоциации одновре­менно образуют катионы водорода (H + ) и гидроксид-ионы ( OH — )

Примеры уравнений диссоциации щелочей

Многокислотные основания диссоциируют ступенчато:

Ba(ОН)2 -> Bа(ОН) + + OH — (первая ступень)

Ba(OH) + ↔ Ba 2+ +OH — (вторая ступень)

Примеры уравнений диссоциации амфолитов

Диссоциацию амфотерного гидроксида цинка Zn(ОН)2 можно выра­зить уравнением:

Нерас­тво­ри­мые в воде ос­но­ва­ния прак­ти­че­ски не под­вер­га­ют­ся элек­тро­ли­ти­че­ской дис­со­ци­а­ции, так как в воде они прак­ти­че­ски нерас­тво­ри­мы, а при на­гре­ва­нии – раз­ла­га­ют­ся, так что рас­плав их по­лу­чить не уда­ет­ся.

III. Электролитическая диссоциация солей

Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH + 4) и анионы кислотных остатков.

Например, диссоциация средних солей :

Кислые же и основные соли диссоци­ируют ступенчато:

Диссоциация кислых солей

Диссоциация основных солей

У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода.

У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.

Mg(OH)Cl -> Mg(OH) + + Cl —

Mg (OH) + Mg 2+ + OH —

IV. Тренажеры

Тренажёр №2 — Катионы и анионы

Интерактивное задание LearningApps.org по теме: “Химические свойства растворов кислот»

V. Памятки

Памятка – Определение солей

VI. Задания для закрепления

Задание №1. Используя таблицу растворимости солей, кислот, оснований напишите уравнения диссоциации следующих веществ:

Задание №2. Используя таблицу растворимости солей, кислот, оснований напишите уравнения диссоциации следующих веществ: Ca(OH)2, Na2CO3, Na3PO4, HNO3, KOH, Ba(OH)2, H2SO3, Ca(NO3)2, Ca3(PO4)2, H2S, NaOH, HBr

Видео:Диссоциация кислот.Скачать

Диссоциация кислот.

1.4.5. Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты.

Как известно из курса физики, электрическим током называют упорядоченное движение заряженных частиц. В случае металлов, электропроводность обеспечивается подвижными электронами в кристалле, слабо связанными c ядрами атомов, что позволяет им направленно двигаться под действием разности потенциалов.

Кроме металлов, существуют также вещества растворы или расплавы которых проводят электрический ток. Такие вещества называют электролитами.

Электролиты — вещества, расплавы или водные растворы которых проводят электрический ток.

Но за счет чего обеспечивается электрическая проводимость расплавов и растворов электролитов?

Рассмотрим такое соединение как хлорида натрия. Это вещество характеризуется ионным строением. В узлах его структурной решетки находятся попеременно в шахматном порядке катионы натрия и анионы хлора:

Уравнение диссоциации серной кислоты и соляной кислоты

Как можно видеть, заряженные частицы, которые могли бы быть обеспечивать электрическую проводимость присутствуют, но статичны, т.е. неподвижны в узлах решетки. Поэтому, чтобы электрический ток смог протекать через хлорид натрия, нужно еще и обеспечить «подвижность» ионов, из которых он состоит.

Как известно, для одного и того же вещества наиболее подвижны составляющие его частицы в том случае, когда он находится в жидком, а не в твердом агрегатном состоянии. Поэтому для того, чтобы хлорид натрия смог проводить электрический ток, его необходимо расплавить, т.е. превратить в жидкость. В результате сообщения энергии кристаллу хлорида натрия в виде большого количества теплоты частично разрушаются ионные связи Na + Cl − , т.е. происходит диссоциация на свободные подвижные ионы:

Na + Cl − ↔ Na + + Cl −

Однако, добиться диссоциации хлорида натрия можно не только его плавлением, но также и его растворением в воде. Но каким образом, это становится возможным? Ведь для того чтобы произошло разрушение кристаллической решетки требуется сообщить ей энергию, что и происходило при расплавлении. Откуда же берется энергия на разрушение решетки в случае растворения?

При помещении кристалла NaCl в воду его поверхность подвергается «облепливанию» молекулами воды или гидратации, в результате которой, ионам в структурной решетке сообщается энергия, достаточная для выделения из структурной решетки и «отправления в свободное плавание» в «оболочке» из молекул воды:

Уравнение диссоциации серной кислоты и соляной кислоты

или более упрощенно:

NaCl ↔ Na + + Cl − (участвующие в гидратации кристалла NaCl и ионов молекулы воды не записываются)

Если энергия, выделяющаяся при гидратации кристалла, меньше энергии кристаллической решетки, то его растворение и диссоциация становятся невозможными. Например, поверхность кристалла сульфата бария, помещенного в водную среду, также покрывается молекулами воды, но выделяющаяся в результате этого энергия недостаточна отрыва ионов Ba 2+ и SO4 2- из кристаллической решетки и, как следствие, становится невозможно его растворение (на самом деле возможно, но в крайне малой степени, т.к. абсолютно нерастворимых веществ не бывает).

Аналогичным образом диссоциация осуществляется также гидроксидами металлов. Например:

Помимо веществ ионного строения, электролитически диссоциировать способны также и некоторые вещества молекулярного строения с ковалентным полярным типом связи, а именно кислоты. Как и в случае ионных соединений, причина образования ионов из электронейтральных молекул кроется в их гидратации. Существование гидратированных ионов энергетически более выгодно, чем существование гидратированных молекул. Например, диссоциация молекулы соляной кислоты выглядит примерно следующим образом:

Уравнение диссоциации серной кислоты и соляной кислоты

Гидратация катионов водорода настолько сильна, что можно говорить не просто о катионе водорода, окружённом молекулами воды (как это было с катионами натрия), а о полноценной частице – ионе гидроксония H3O + , содержащей три полноценные ковалентные связи H-О, одна из которых образована по донорно-акцепторному механизму. Таким образом, уравнение диссоциации соляной кислоты правильнее записывать так:

Тем не менее, даже в этом случае, чаще всего, уравнение диссоциации соляной кислоты, впрочем, как и любой другой, записывают, игнорируя явное участие в диссоциации кислот молекул воды.

Диссоциация многоосновных кислот протекает ступенчато, например:

Таким образом, как мы уже выяснили, к электролитам относят: соли, кислоты и основания.

Для описания способности электролитов к электролитической диссоциации используют величину, которая называется степенью диссоциации (α).

Степень диссоциации – отношение числа продиссоциировавших частиц, к общему числу растворенных частиц.

Видео:КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и Металлами

Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:

Уравнение диссоциации серной кислоты и соляной кислоты

Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.

Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.

Первая ступень диссоциации (отщепление одного иона водорода Н + ):

Уравнение диссоциации серной кислоты и соляной кислоты

Константа диссоциации по первой ступени:

Уравнение диссоциации серной кислоты и соляной кислоты

Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):

Уравнение диссоциации серной кислоты и соляной кислоты

Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .

Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:Уравнение диссоциации серной кислоты и соляной кислоты

Сильное двухкислотное основание Ca(OH)2 диссоциирует так:

Уравнение диссоциации серной кислоты и соляной кислоты

Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.

Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.

Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):

Уравнение диссоциации серной кислоты и соляной кислоты

Уравнение диссоциации серной кислоты и соляной кислоты

Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):

Уравнение диссоциации серной кислоты и соляной кислоты

Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .

Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.

К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.

В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .

Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:

Уравнение диссоциации серной кислоты и соляной кислоты

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.

Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:

Уравнение диссоциации серной кислоты и соляной кислоты

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.

Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.Уравнение диссоциации серной кислоты и соляной кислоты

Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:

Уравнение диссоциации серной кислоты и соляной кислоты

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .

Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):

Уравнение диссоциации серной кислоты и соляной кислоты

Сложный катион частично диссоциирует по уравнениям:

Уравнение диссоциации серной кислоты и соляной кислоты

Для обеих ступеней диссоциации Fe(OH)2 + .

📸 Видео

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Серная кислота и ее соли. 9 класс.Скачать

Серная кислота и ее соли. 9 класс.

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIV

Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙ

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭСкачать

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭ

Химия 9 класс (Урок№13 - Оксид серы (VI). Серная кислота и ее соли.)Скачать

Химия 9 класс (Урок№13 - Оксид серы (VI). Серная кислота и ее соли.)

Задание 13: Все про электролитическую диссоциацию на ОГЭСкачать

Задание 13: Все про электролитическую диссоциацию на ОГЭ

Свойства кислот с точки зрения теории электролитической диссоциации. 9 класс.Скачать

Свойства кислот с точки зрения теории электролитической диссоциации. 9 класс.

Хлороводородная кислота. 9 класс.Скачать

Хлороводородная кислота. 9 класс.

Химические свойства соляной кислотыСкачать

Химические свойства соляной кислоты

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Получение соляной кислотыСкачать

Получение соляной кислоты

распознавание растворов соляной, азотной и серной кислотСкачать

распознавание растворов соляной, азотной и серной кислот

73. Диссоциация кислот и основанийСкачать

73. Диссоциация кислот и оснований

Взаимодействие цинка с серной кислотойСкачать

Взаимодействие цинка с серной кислотой
Поделиться или сохранить к себе: