Уравнение диссоциации hf в водном растворе

Видео:Диссоциация электролитов в водных растворах. Видеоурок 39. Химия 9 классСкачать

Диссоциация электролитов в водных растворах. Видеоурок 39. Химия 9 класс

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K + (катион) + A — (анион)

Уравнение диссоциации hf в водном растворе

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Уравнение диссоциации hf в водном растворе

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Уравнение диссоциации hf в водном растворе

Для средних солей диссоциация чаще всего происходит в одну ступень:

Из одной молекулы ортофосфата натрия образовалось 4 иона.

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Уравнение диссоциации hf в водном растворе

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Уравнение диссоциации hf в водном растворе

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Уравнение диссоциации hf в водном растворе

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Уравнение диссоциации hf в водном растворе

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Уравнение диссоциации hf в водном растворе

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

Уравнение диссоциации hf в водном растворе

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Электролитическая диссоциация

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:

Уравнение диссоциации hf в водном растворе

Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.

Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.

Первая ступень диссоциации (отщепление одного иона водорода Н + ):

Уравнение диссоциации hf в водном растворе

Константа диссоциации по первой ступени:

Уравнение диссоциации hf в водном растворе

Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):

Уравнение диссоциации hf в водном растворе

Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .

Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:Уравнение диссоциации hf в водном растворе

Сильное двухкислотное основание Ca(OH)2 диссоциирует так:

Уравнение диссоциации hf в водном растворе

Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.

Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.

Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):

Уравнение диссоциации hf в водном растворе

Уравнение диссоциации hf в водном растворе

Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):

Уравнение диссоциации hf в водном растворе

Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .

Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.

К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.

В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .

Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:

Уравнение диссоциации hf в водном растворе

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.

Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:

Уравнение диссоциации hf в водном растворе

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.

Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.Уравнение диссоциации hf в водном растворе

Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:

Уравнение диссоциации hf в водном растворе

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .

Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):

Уравнение диссоциации hf в водном растворе

Сложный катион частично диссоциирует по уравнениям:

Уравнение диссоциации hf в водном растворе

Для обеих ступеней диссоциации Fe(OH)2 + .

Видео:Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

РАСЧЁТ pH В РАСТВОРАХ КИСЛОТ И ОСНОВАНИЙ

Чистая вода является очень слабым электролитом. Процесс диссоциации воды может быть выражен уравнением: HOH ⇆ H + + OH – . Вследствие диссоциации воды в любом водном растворе содержатся и ионы H + , и ионы OH – . Концентрации этих ионов можно рассчитать с помощью уравнения ионного произведения воды

где Kwконстанта ионного произведения воды; при 25°C Kw = 10 –14 .

Растворы, в которых концентрации ионов H + и OH – одинаковы, называются нейтральными растворами. В нейтральном растворе C(H + ) = C(OH – ) = 10 –7 моль/л.

В кислом растворе C(H + ) > C(OH – ) и, как следует из уравнения ионного произведения воды, C(H + ) > 10 –7 моль/л, а C(OH – ) –7 моль/л.

В щелочном растворе C(OH – ) > C(H + ); при этом в C(OH – ) > 10 –7 моль/л, а C(H + ) –7 моль/л.

pH – величина, с помощью которой характеризуют кислотность или щёлочность водных растворов; эта величина называется водородным показателем и рассчитывается по формуле:

В кислом растворе pH 7.

По аналогии с понятием «водородный показатель» (pH) вводится понятие «гидроксильный» показатель (pOH):

Водородный и гидроксильный показатели связаны соотношением

Гидроксильный показатель используется для расчёта pH в щелочных растворах.

Пример 7.1 Рассчитать pH 0,005 М раствора серной кислоты.

Серная кислота – сильный электролит, диссоциирующий в разбавленных растворах необратимо и полностью по схеме: H2SO4 ® 2 H + + SO4 2– . Из уравнения процесса диссоциации видно, что C(H + ) = 2·C(H2SO4) = 2 × 0,005 моль/л = 0,01 моль/л.

pH = –lg C(H + ) = –lg 0,01 = 2.

Пример 7.2 Рассчитать pH 0,1 М раствора гидроксида натрия.

Гидроксид натрия – сильный электролит, диссоциирующий необратимо и полностью по схеме: NaOH ® Na + +OH – . Из уравнения процесса диссоциации видно, что C(OH – ) = C(NaOH) = 0,1 моль/л.

pOH = –lg C(H + ) = –lg 0,1 = 1; pH = 14 – pOH = 14 – 1 = 13.

Диссоциация слабого электролита – это равновесный процесс. Константа равновесия, записанная для процесса диссоциации слабого электролита, называется константой диссоциации. Например, для процесса диссоциации уксусной кислоты

Уравнение диссоциации hf в водном растворе

Каждая стадия диссоциации многоосновной кислоты характеризуется своей константой диссоциации. Константа диссоциации – справочная величина; см. [1; 2].

Расчёт концентраций ионов (и pH) в растворах слабых электролитов сводится к решению задачи на химическое равновесие для того случая, когда известна константа равновесия и необходимо найти равновесные концентрации веществ, участвующих в реакции (см. пример 6.2 – задача 2 типа).

Пример 7.3 Рассчитать pH и степень диссоциации электролита в растворе NH4OH с массовой долей 0,35%. Плотность раствора – 1 г/мл.

В 0,35% растворе NH4OH молярная концентрация гидроксида аммония равна 0,1 моль/л (пример перевода процентной концентрации в молярную – см. пример 5.1). Эту величину часто обозначают C0. C0 – это общая концентрация электролита в растворе (концентрация электролита до диссоциации).

NH4OH принято считать слабым электролитом, обратимо диссоциирующим в водном растворе: NH4OH ⇆ NH4 + + OH – (см. также примечание 2 на стр. 5). Константа диссоциации К = 1,8·10 –5 (справочная величина). Поскольку слабый электролит диссоциирует неполностью, сделаем предположение, что продиссоциировало x моль/л NH4OH, тогда равновесная концентрация ионов аммония и гидроксид-ионов также будут равняться x моль/л: C(NH4 + ) = C(OH — ) = x моль/л. Равновесная концентрация непродиссоциировавшего NH4OH равна: С(NH4OH) = (C0–x) = (0,1–x) моль/л.

Подставляем выраженные через x равновесные концентрации всех частиц в уравнение константы диссоциации:

Уравнение диссоциации hf в водном растворе.

Очень слабые электролиты диссоциируют незначительно (x ® 0) и иксом в знаменателе как слагаемым можно пренебречь:

Уравнение диссоциации hf в водном растворе.

Обычно в задачах общей химии иксом в знаменателе пренебрегают в том случае, если Уравнение диссоциации hf в водном растворе(в этом случае х – концентрация продиссоциировавшего электролита – в 10 и менее раз отличается от C0 – общей концентрации электролита в растворе).

Уравнение диссоциации hf в водном растворемоль/л

С(OH – ) = x = 1,34∙10 -3 моль/л; pOH = –lg C(OH – ) = –lg 1,34∙10 –3 = 2,87.

pH = 14 – pOH = 14 – 2,87 = 11,13.

Степень диссоциации электролита можно рассчитать как отношение концентрации продиссоциировавшего электролита (x) к общей концентрации электролита (C0):

Уравнение диссоциации hf в водном растворе(1,34%).

Пример 7.4 Рассчитать pH 30% раствора фосфорной кислоты (плотность раствора 1,18 г/мл. Чему равна степень диссоциации электролита в этом растворе?

Сначала следует перевести процентную концентрацию в молярную (см. пример 5.1). В данном случае C0(H3PO4) = 3,6 моль/л.

Расчёт концентрации ионов водорода в растворах многоосновных слабых кислот, проводится только по первой стадии диссоциации. Строго говоря, общая концентрация ионов водорода в растворе слабой многоосновной кислоты равна сумме концентраций ионов H + , образовавшихся на каждой стадии диссоциации. Например, для фосфорной кислоты C(H + )общая = C(H + )по 1 стадии + C(H + )по 2 стадии + C(H + )по 3 стадии . Однако, диссоциация слабых электролитов протекает преимущественно по первой стадии, а по второй и последующим стадиям – в незначительной степени, поэтому

C(H + )по 2 стадии ≈ 0, C(H + )по 3 стадии ≈ 0 и C(H + )общая ≈ C(H + )по 1 стадии .

Пусть фосфорной кислоты продиссоциировало по первой стадии x моль/л, тогда из уравнения диссоциации H3PO4 ⇆ H + + H2PO4 – следует, что равновесные концентрации ионов H + и H2PO4 – также будут равны x моль/л, а равновесная концентрация непродиссоциировавшей H3PO4 будет равна (3,6–x) моль/л. Подставляем выраженные через x концентрации ионов H + и H2PO4 – и молекул H3PO4 в выражение константы диссоциации по первой стадии (K1 = 7,5·10 –3 – справочная величина):

Уравнение диссоциации hf в водном растворе

K1/C0 = 7,5·10 –3 / 3,6 = 2,1·10 –3 –2 ; следовательно, иксом как слагаемым в знаменателе можно пренебречь (см. также пример 7.3) и упростить полученное выражение.

Уравнение диссоциации hf в водном растворе;

Уравнение диссоциации hf в водном растворемоль/л;

С(H + ) = x = 0,217 моль/л; pH = –lg C(H + ) = –lg 0,217 = 0,66.

Уравнение диссоциации hf в водном растворе(3,44%)

Задание №8

Рассчитайте а) pH растворов сильных кислот и оснований; б) раствора слабого электролита и степень диссоциации электролита в этом растворе (таблица 8). Плотность растворов принять равной 1 г/мл.

Таблица 8 – Условия задания №8

№ вари- антааб№ вари- антааб
0,01М H2SO4; 1% NaOH0,35% NH4OH
0,01МCa(OH)2; 2%HNO31% CH3COOH0,04М H2SO4; 4% NaOH1% NH4OH
0,5М HClO4; 1% Ba(OH)20,98% H3PO40,7М HClO4; 4%Ba(OH)23% H3PO4
0,02M LiOH; 0,3% HNO30,34% H2S0,06M LiOH; 0,1% HNO31,36% H2S
0,1М HMnO4; 0,1% KOH0,031% H2CO30,2М HMnO4; 0,2%KOH0,124%H2CO3
0,4М HCl; 0,08%Ca(OH)20,47% HNO20,8МHCl; 0,03%Ca(OH)21,4% HNO2
0,05M NaOH; 0,81% HBr0,4% H2SO30,07M NaOH; 3,24% HBr1,23% H2SO3
0,02M Ba(OH)2; 0,13%HI0,2% HF0,05M Ba(OH)2; 2,5% HI2% HF
0,02М H2SO4; 2% NaOH0,7% NH4OH0,06МH2SO4; 0,8%NaOH5%CH3COOH
0,7М HClO4; 2%Ba(OH)21,96% H3PO40,08М H2SO4; 3% NaOH4% H3PO4
0,04MLiOH; 0,63%HNO30,68% H2S0,008M HI; 1,7%Ba(OH)23,4% H2S
0,3МHMnO4; 0,56%KOH0,062% H2CO30,08M LiOH; 1,3% HNO30,2% H2CO3
0,6М HCl; 0,05%Ca(OH)20,94% HNO20,01M HMnO4; 1% KOH2,35% HNO2
0,03M NaOH; 1,62% HBr0,82% H2SO30,9МHCl; 0,01%Ca(OH)22% H2SO3
0,03M Ba(OH)2; 1,26%HI0,5% HF0,09M NaOH; 6,5% HBr5% HF
0,03М H2SO4; 0,4%NaOH3% CH3COOH0,1M Ba(OH)2; 6,4% HI6%CH3COOH
0,002M HI; 3% Ba(OH)21% HF0,04МH2SO4; 1,6%NaOH3,5% NH4OH
0,005МHBr; 0,24% LiOH1,64% H2SO30,001М HI; 0,4%Ba(OH)25% H3PO4

Пример 7.5 Смешали 200 мл 0,2М раствора H2SO4 и 300 мл 0,1М раствора NaOH. Рассчитайте pH образовавшегося раствора и концентрации ионов Na + и SO4 2– в этом растворе.

Приведём уравнение реакции H2SO4 + 2 NaOH → Na2SO4 + 2 H2O к сокращённому ионно-молекулярному виду: H + + OH — → H2O

Из ионно-молекулярного уравнения реакции следует, что в реакцию вступают только ионы H + и OH – и образуют молекулу воды. Ионы Na + и SO4 2– в реакции не участвуют, поэтому их количество после реакции такое же как и до реакции.

Расчёт количеств веществ до реакции:

n(H + ) = 2 × n(H2SO4) = 2 × 0,02 моль = 0,04 моль;

n(NaOH) = 0,1 моль/л · 0,3 л = 0,03 моль = n(Na + ) = n(OH – ).

Ионы OH – – в недостатке; они прореагируют полностью. Вместе с ними прореагирует столько же (т.е. 0,03 моль) ионов H + .

Расчёт количеств ионов после реакции:

n(H + ) = n(H + )до реакции – n(H + )прореагировавших = 0,04 моль – 0,03 моль = 0,01 моль;

n(Na + ) = 0,03 моль; n(SO4 2– ) = 0,02 моль.

Т.к. смешиваются разбавленные растворы, то

Vобщ. » Vраствора H2SO4 + V раствора NaOH » 200 мл + 300 мл = 500 мл = 0,5 л.

C(Na + ) = n(Na + ) / Vобщ. = 0,03 моль : 0,5 л = 0,06 моль/л;

C(H + ) = n(H + ) / Vобщ. = 0,01 моль : 0,5 л = 0,02 моль/л;

pH = –lg C(H + ) = –lg 2·10 –2 = 1,699.

Задание №9

Рассчитайте pH и молярные концентрации катионов металла и анионов кис­лотного остатка в растворе, образовавшемся в результате смешивания раствора сильной кислоты с раствором щёлочи (таблица 9).

Таблица 9 – Условия задания №9

№ вари- антаОбъёмы и состав растворов кислоты и щёлочи№ вари- антаОбъёмы и состав растворов кислоты и щёлочи
300 мл 0,1М NaOH и 200 мл 0,2М H2SO4
2 л 0,05М Ca(OH)2 и 300 мл 0,2М HNO30,5 л 0,1М KOH и 200 мл 0,25М H2SO4
700 мл 0,1М KOH и 300 мл 0,1М H2SO41 л 0,05М Ba(OH)2 и 200 мл 0,8М HCl
80 мл 0,15М KOH и 20 мл 0,2М H2SO4400мл 0,05М NaOH и 600мл 0,02М H2SO4
100 мл 0,1М Ba(OH)2 и 20 мл 0,5М HCl250 мл 0,4М KOH и 250 мл 0,1М H2SO4
700мл 0,05М NaOH и 300мл 0,1М H2SO4200мл 0,05М Ca(OH)2 и 200мл 0,04М HCl
50 мл 0,2М Ba(OH)2 и 150 мл 0,1М HCl150мл 0,08М NaOH и 350мл 0,02М H2SO4
900мл 0,01М KOH и 100мл 0,05М H2SO4600мл 0,01М Ca(OH)2 и 150мл 0,12М HCl
250 мл 0,1М NaOH и 150 мл 0,1М H2SO4100 мл 0,2М Ba(OH)2 и 50 мл 1М HCl
1 л 0,05М Ca(OH)2 и 500 мл 0,1М HNO3100 мл 0,5М NaOH и 100 мл 0,4М H2SO4
100 мл 1М NaOH и 1900 мл 0,1М H2SO425 мл 0,1М KOH и 75 мл 0,01М H2SO4
300 мл 0,1М Ba(OH)2 и 200 мл 0,2М HCl100мл 0,02М Ba(OH)2 и 150мл 0,04 М HI
200 мл 0,05М KOH и 50 мл 0,2М H2SO41 л 0,01М Ca(OH)2 и 500 мл 0,05М HNO3
500мл 0,05М Ba(OH)2 и 500мл 0,15М HI250мл 0,04М Ba(OH)2 и 500мл 0,1М HCl
1 л 0,1М KOH и 2 л 0,05М H2SO4500 мл 1М NaOH и 1500 мл 0,1М H2SO4
250мл 0,4М Ba(OH)2 и 250мл 0,4М HNO3200 мл 0,1М Ba(OH)2 и 300 мл 0,2М HCl
80 мл 0,05М KOH и 20 мл 0,2М H2SO450 мл 0,2М KOH и 200 мл 0,05М H2SO4
300 мл 0,25М Ba(OH)2 и 200 мл 0,3М HCl1 л 0,03М Ca(OH)2 и 500 мл 0,1М HNO3

ГИДРОЛИЗ СОЛЕЙ

При растворении в воде любой соли происходит диссоциация этой соли на катионы и анионы. Если соль образована катионом сильного основания и анионом слабой кислоты (например, нитрит калия KNO2), то нитрит-ионы будут связываться с ионами H + , отщепляя их от молекул воды, в результате чего образуется слабая азотистая кислота. В результате этого взаимодействия в растворе установится равновесие:

Таким образом, в растворе соли, гидролизующейся по аниону, появляется избыток ионов OH – (реакция среды – щелочная; pH > 7).

Если соль образована катионом слабого основания и анионом сильной кислоты (например, хлорид аммония NH4Cl), то катионы NH4 + слабого основания будут отщеплять ионы OH – от молекул воды и образовывать слабодиссоциирующий электролит – гидроксид аммония 1 .

В растворе соли гидролизующейся по катиону появляется избыток ионов H + (реакция среды – кислая pH + связываются с ионами OH – , отщепляя их от молекул воды, а анионы слабой кислоты F – связываются с ионами H + , в результате чего образуется слабое основание NH4OH и слабая кислота HF: 2

Реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из образующихся в результате гидролиза малодиссоциирующих электролитов является более сильным (это можно выяснить, сравнив константы диссоциации). В случае гидролиза NH4F среда будет кислой (pH –5 –4 .

Таким образом, гидролизу (т.е. разложению водой) подвергаются соли, образованные:

– катионом сильного основания и анионом слабой кислоты (KNO2, Na2CO3, K3PO4);

– катионом слабого основания и анионом сильной кислоты (NH4NO3, AlCl3, ZnSO4);

– катионом слабого основания и анионом слабой кислоты (Mg(CH3COO)2, NH4F).

C молекулами воды взаимодействуют катионы слабых оснований или (и) анионы слабых кислот; соли образованные катионами сильных оснований и анионами сильных кислот гидролизу не подвергаются.

Гидролиз солей, образованных многозарядными катионами и анионами, протекает ступенчато; ниже на конкретных примерах показана последовательность рассуждений, которой рекомендуется придерживаться при составлении уравнений гидролиза таких солей.

Уравнение диссоциации hf в водном растворе

1. Как уже отмечалось ранее (см. примечание 2 на стр. 5) существует альтернативная точка зрения, согласно которой гидроксид аммония является сильным основанием. Кислая реакция среды в растворах солей аммония, образованных сильными кислотами, например, NH4Cl, NH4NO3, (NH4)2SO4, объясняется при таком подходе обратимо протекающим процессом диссоциации иона аммония NH4 + ⇄ NH3 + H + или, более точно NH4 + + H2O ⇄ NH3 + H3O + .

2. Если гидроксид аммония считать сильным основанием, то в растворах солей аммония, образованных слабыми кислотами, например, NH4F следует рассматривать равновесие NH4 + + F – ⇆ NH3 + HF, в котором происходит конкуренция за ион H + между молекулами аммиака и анионами слабой кислоты.

Пример 8.1 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза карбоната натрия. Укажите pH раствора (pH>7, pH + + CO3 2–

2. Соль образована катионами (Na + ) сильного основания NaOH и анионом (CO3 2– ) слабой кислоты H2CO3. Следовательно, соль гидролизуется по аниону:

Гидролиз в большинстве случаев протекает обратимо (знак ⇄); на 1 ион, участвующий в процессе гидролиза, записывается 1 молекула HOH.

3. Отрицательно заряженные карбонат ионы CO3 2– связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH, и образуют гидрокарбонат ионы HCO3 – ; раствор обогащается ионами OH – (щелочная среда; pH>7):

Это ионно-молекулярное уравнение первой стадии гидролиза Na2CO3.

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, соединив все имеющиеся в уравнении CO3 2– + HOH ⇆ HCO3 – + OH – анионы (CO3 2– , HCO3 – и OH – ) с катионами Na + , образовав соли Na2CO3, NaHCO3 и основание NaOH:

5. В результате гидролиза по первой стадии образовались гидрокарбонат ионы, которые участвуют во второй стадии гидролиза:

(отрицательно заряженные гидрокарбонат ионы HCO3 – связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении HCO3 – + HOH ⇆ H2CO3 + OH – анионы (HCO3 – и OH – ) с катионами Na + , образовав соль NaHCO3 и основание NaOH:

В результате этих рассуждений получаем следующие уравнения гидролиза:

Пример 8.2 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза сульфата алюминия. Укажите pH раствора (pH>7, pH 3+ + 3SO4 2–

2. Соль образована катионами (Al 3+ ) слабого основания Al(OH)3 и анионами (SO4 2– ) сильной кислоты H2SO4. Следовательно, соль гидролизуется по катиону; на 1 ион Al 3+ записывается 1 молекула HOH: Al 3+ + HOH ⇆ … .

3. Положительно заряженные ионы Al 3+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, и образуют ионы гидроксоалюминия AlOH 2+ ; раствор обогащается ионами H + (кислая среда; pH 3+ + HOH ⇆ AlOH 2+ + H + .

Это ионно-молекулярное уравнение первой стадии гидролиза Al2(SO4)3.

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении Al 3+ + HOH ⇆ AlOH 2+ + H + катионы (Al 3+ , AlOH 2+ и H + ) с анионами SO4 2– , образовав соли Al2(SO4)3, AlOHSO4 и кислоту H2SO4:

5. В результате гидролиза по первой стадии образовались катионы гидроксо­алюминия AlOH 2+ , которые участвуют во второй стадии гидролиза:

AlOH 2+ + HOH ⇆ Al(OH)2 + + H +

(положительно заряженные ионы AlOH 2+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении AlOH 2+ + HOH ⇆ Al(OH)2 + + H + катионы (AlOH 2+ , Al(OH)2 + , и H + ) с анионами SO4 2– , образовав соли AlOHSO4, (Al(OH)2)2SO4 и кислоту H2SO4:

7. В результате второй стадии гидролиза образовались катионы дигидроксоалюминия Al(OH)2 + , которые участвуют в третьей стадии гидролиза:

(положительно заряженные ионы Al(OH)2 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении Al(OH)2 + + HOH ⇆ Al(OH)3 + H + катионы (Al(OH)2 + и H + ) с анионами SO4 2– , образовав соль (Al(OH)2)2SO4 и кислоту H2SO4:

В результате этих рассуждений получаем следующие уравнения гидролиза:

Пример 8.3 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза ортофосфата аммония. Укажите pH раствора (pH>7, pH + + PO4 3–

2. Соль образована катионами (NH4 + ) слабого основания NH4OH и анионами

(PO4 3– ) слабой кислоты H3PO4. Следовательно, соль гидролизуется и по катиону, и по аниону: NH4 + + PO4 3– +HOH ⇆ … ; (на одну пару ионов NH4 + и PO4 3– в данном случае записывается 1 молекула HOH). Положительно заряженные ионы NH4 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, образуя слабое основание NH4OH, а отрицательно заряженные ионы PO4 3– связываются с ионами H + , образуя гидрофосфат ионы HPO4 2– :

Это ионно-молекулярное уравнение первой стадии гидролиза (NH4)3PO4.

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH4 + + PO4 3– + HOH ⇆ NH4OH + HPO4 2– анионы (PO4 3– , HPO4 2– ) с катионами NH4 + , образовав соли (NH4)3PO4, (NH4)2HPO4:

5. В результате гидролиза по первой стадии образовались гидрофосфат анионы HPO4 2– , которые вместе с катионами NH4 + участвуют во второй стадии гидролиза:

(ионы NH4 + связываются с ионами OH – , ионы HPO4 2– – с ионами H + , отщепляя их от молекул HOH, образуя слабое основание NH4OH и дигидрофосфат ионы H2PO4 – ).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH4 + + HPO4 2– + HOH ⇆ NH4OH + H2PO4 – анионы (HPO4 2– и H2PO4 – ) с катионами NH4 + , образовав соли (NH4)2HPO4 и NH4H2PO4:

7. В результате второй стадии гидролиза образовались дигидрофосфат анионы H2PO4 – , которые вместе с катионами NH4 + участвуют в третьей стадии гидролиза:

(ионы NH4 + связываются с ионами OH – , ионы H2PO4 – – с ионами H + , отщепляя их от молекул HOH и образуют слабые электролиты NH4OH и H3PO4).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав присутствующие в уравнении NH4 + + H2PO4 – + HOH ⇆ NH4OH + H3PO4 анионы H2PO4 – и катионами NH4 + и образовав соль NH4H2PO4:

В результате этих рассуждений получаем следующие уравнения гидролиза:

Процесс гидролиза протекает преимущественно по первой стадии, поэтому реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из малодиссоциирующих электролитов, образующихся на первой стадии гидролиза, является более сильным. В рассматриваемом случае

реакция среды будет щелочной (pH>7), поскольку ион HPO4 2– – более слабый электролит, чем NH4OH: KNH4OH = 1,8·10 –5 > KHPO4 2– = KIII H3PO4 = 1,3×10 –12 (диссоциация иона HPO4 2– – это диссоциация H3PO4 по третьей стадии, поэтому KHPO4 2– = KIII H3PO4).

Задание №10

Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза солей (таблица 10). Укажите pH раствора (pH>7, pH

Уравнение диссоциации hf в водном растворе

Уравнение диссоциации hf в водном растворе

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.

Уравнение диссоциации hf в водном растворе

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала.

Уравнение диссоциации hf в водном растворе

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).

Уравнение диссоциации hf в водном растворе

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

🎦 Видео

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Электролитическая диссоциация электролитов в водных растворах. Химия ЕГЭСкачать

Электролитическая диссоциация электролитов в водных растворах.  Химия ЕГЭ

Основные положения теории электролитической диссоциации. Свойства ионов. 9 класс.Скачать

Основные положения теории электролитической диссоциации. Свойства ионов. 9 класс.

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙ

§39, 9 кл. Диссоциация электролитов в водных растворахСкачать

§39, 9 кл. Диссоциация электролитов в водных растворах

Химия 9 класс (Урок№5 - Сущность процесса электролитической диссоциации.)Скачать

Химия 9 класс (Урок№5 - Сущность процесса электролитической диссоциации.)

Электролитическая диссоциация | Химия ЕГЭ, ЦТСкачать

Электролитическая диссоциация | Химия ЕГЭ, ЦТ

Диссоциация. Сильные и слабые электролиты. Проводник второго рода. Химия – ПростоСкачать

Диссоциация. Сильные и слабые электролиты. Проводник второго рода. Химия – Просто

Механизм электролитической диссоциации. 9 класс.Скачать

Механизм электролитической диссоциации. 9 класс.

Задание 13. Диссоциация, как писать уравнения диссоциации? | Химия ОГЭ | УмскулСкачать

Задание 13. Диссоциация, как писать уравнения диссоциации? | Химия ОГЭ | Умскул

сильные и слабые электролиты РАСЧЕТ рНСкачать

сильные и слабые электролиты РАСЧЕТ рН

Задание 13: Все про электролитическую диссоциацию на ОГЭСкачать

Задание 13: Все про электролитическую диссоциацию на ОГЭ

72. Электролитическая диссоциацияСкачать

72. Электролитическая диссоциация

9 класс. Электролитическая диссоциация. Образование ионов.Скачать

9 класс. Электролитическая диссоциация. Образование ионов.

Основные положения теории электролитической диссоциации | Химия 8 класс #41 | ИнфоурокСкачать

Основные положения теории электролитической диссоциации  | Химия 8 класс #41 | Инфоурок

Закон разбавления ОствальдаСкачать

Закон разбавления Оствальда
Поделиться или сохранить к себе: