РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Простейшие тригонометрические уравнения — Часть 1
Простейшими называются тригонометрические уравнения следующих четырёх видов:
Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники допускают множество элементарных ошибок. Цель данной статьи — уберечь вас от нелепых и досадных потерь баллов в подобной ситуации на едином госэкзамене.
Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрёжки шестнадцати строк заклинаний на непонятном языке. Мы забраковываем этот подход раз и навсегда.
Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.
Данный подход требует понимания, осмысленных действий и ясного видения тригонометрического круга. Не беспокойтесь, эти трудности преодолеваются быстро. Усилия, потраченные на этом пути, будут щедро вознаграждены: вы начнёте безошибочно решать тригонометрические уравнения.
Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Уравнения cosx = a и sinx = a
Напомним, что cos x — абсцисса точки на единичной окружности, соответствующей углу x, а sin x — её ордината
Из определения синуса и косинуса следует, что уравнения cosx = a и sinx = a имеют решения только при условии . Абитуриент, будь внимателен! Уравнения или cosx = −7 решений не имеют!
Начнём с самых простых уравнений.
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:
Эта точка соответствует бесконечному множеству углов: 0, 2π, −2π, 4π, −4π, 6π, −6π, . . . Все они получаются из нулевого угла прибавлением целого числа полных углов 2π (т. е. нескольких полных оборотов как в одну, так и в другую сторону).
Следовательно, все эти углы могут быть записаны одной формулой:
Это и есть множество решений данного уравнения. Напоминаем, что Z — это множество целых чисел.
Снова видим, что на единичной окружности есть лишь одна точка с абсциссой −1:
Эта точка соответствует углу π и всем углам, отличающихся от π на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:
Отмечаем на тригонометрическом круге единственную точку с ординатой 1:
И записываем ответ:
Обсуждать тут уже нечего, не так ли? 🙂
Можете, кстати, записать ответ и в другом виде:
Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение.
Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить 2πn.
На тригонометрическом круге имеются две точки с ординатой 0:
Эти точки соответствуют углам 0, ±π, ±2π, ±3π, . . . Все эти углы получаются из нулевого угла прибавлением целого числа углов π (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,
Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.
Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:
Все углы, отвечающие этим точкам, получаются из прибавлением целого числа углов π (полуоборотов):
Теперь мы можем сделать и второе полезное наблюдение.
Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить πn.
Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ±1). Начинаем с косинуса.
7.
Имеем вертикальную пару точек с абсциссой
Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):
Аналогично, все углы, соответствующие нижней точке, описываются формулой:
Обе серии решений можно описать одной формулой:
Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.
8.
9.
10.
11.
12.
Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.
13.
Имеем горизонтальную пару точек с ординатой :
Углы, отвечающие правой точке:
Углы, отвечающие левой точке:
Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:
Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:
На первый взгляд совершенно не ясно, каким образом она даёт обе серии решений. Но давайте посмотрим, что получается при чётных k. Если k = 2n, то
Мы получили первую серию решений x1. А если k нечётно, k = 2n + 1, то
Это вторая серия x2.
Обратим внимание, что в качестве множителя при (−1) k обычно ставится правая точка, в данном случае .
Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.
14.
15.
16.
17.
18.
На этом с синусом и косинусом пока всё. Переходим к тангенсу.
Видео:Решение уравнений вида sin x = a, cos x = a, tg x = a. Понятное объснение арксинуса и арккосинуса.Скачать
Линия тангенсов
Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная AB к единичной окружности, параллельная оси ординат (см. рисунок).
Из подобия треугольников OAB и ONM имеем:
Но поэтому
Мы рассмотрели случай, когда x находится в первой четверти. Аналогично рассматриваются случаи, когда x находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.
Тангенс угла x равен ординате точки B, которая является точкой пересечения линии тангенсов и прямой OM, соединяющей точку x с началом координат.
Вот рисунок в случае, когда x находится во второй четверти. Тангенс угла x отрицателен.
Видео:М10 (22.17-22.31) Уравнения: tgx=a, cosx=a, sinx=a. Поиск решения на отрезке.Скачать
Уравнение tg x = a
Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение tg x = a имеет решения при любом a.
19.
Имеем диаметральную горизонтальную пару точек:
Эта пара, как мы уже знаем, описывается формулой:
20.
Имеем диаметральную пару:
Вспоминаем второе полезное наблюдение и пишем ответ:
Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.
21.
22.
23.
24.
25.
На этом заканчиваем пока и с тангенсом.
Уравнение ctg x = a нет смысла рассматривать особо. Дело в том, что:
• уравнение ctg x = 0 равносильно уравнению cos x = 0;
• при уравнение равносильно уравнению
Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 🙂
Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.
А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.
Видео:Решение уравнений вида tg x = a и ctg x = aСкачать
Урок по математике на тему: «Решение простейших тригонометрических уравнений вида sinx=a, cosx=a, tgx=a, ctg=a» (I курс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Алгебра. Группа 3, 4 (I курс)
Дата: 3 гр.________________
Образовательная: Повторить учебный материал, необходимый для успешного решения тригонометрических уравнений, рассмотреть методы решения простейших тригонометрических уравнений вида sinx = a , cosx = a , tgx = a , ctg = a .
Развивающая: формировать умения анализировать и делать выводы, развивать грамотную устную речь; развивать логику, формировать вычислительные, расчётные навыки, развивать мышление учащихся.
Воспитательная : о рганизация совместных действий, ведущих к активизации учебного процесса, стимулирование учеников к самооценке образовательной деятельности; Воспитание чувства самопознания, самоопределения и самореализации;
Дидактическое и методическое оснащение урока: интерактивная доска.
Тип урока: изучение нового материала.
А. Н. Колмогоров «Алгебра и начала математического анализа» 10-11.
1. Организационный момент: приветствие, проверка отсутствующих; сообщение темы урока; постановка цели урока; сообщение этапов урока.
2. Изучение нового материала: решения простейших тригонометрических уравнений вида sinx = a , cosx = a , tgx = a , ctg = a – приложение 1.
3. Закрепление изученного материала: первичное закрепление изученного материала.
4. Итог урока: систематизация и обобщение знаний, полученных на уроке.
5. Домашнее задание: инструктаж по домашнему заданию.
Страница 277. ПОДГОТОВКА К ЕГЭ 2012.
Простейшие тригонометрические уравнения.
Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его
простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.
1. Алгебраический метод. Этот метод нам хорошо известен из алгебры
( метод замены переменной и подстановки).
2. Разложение на множители. Этот метод рассмотрим на примерах.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево: sin x + cos x – 1 = 0, преобразуем и разложим на множители выражение в левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4 x cos 2 x = 2 cos ² 4 x ,
cos 4 x · ( cos 2 x – cos 4 x ) = 0 ,
cos 4 x · 2 sin 3 x · sin x = 0 ,
1). cos 4 x = 0 , 2). sin 3 x = 0 , 3). sin x = 0 ,
Приведение к однородному уравнению. Уравнение называется однородным относительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:
а ) перенести все его члены в левую часть;
б ) вынести все общие множители за скобки;
в ) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д ) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4 y +3 = 0 ,
корни этого уравнения: y 1 = 1, y 2 = 3, отсюда
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу. Рассмотрим этот метод на примере:
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
5. Введение вспомогательного угла. Рассмотрим уравнение вида: a sin x + b cos x = c ,
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:
6. Преобразование произведения в сумму. Здесь используются соответствующие формулы.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
cos 4 x – cos 8 x = cos 4 x ,
7. Универсальная подстановка. Рассмотрим этот метод на примере.
П р и м е р . Решить уравнение: 3 sin x – 4 cos x = 3 .
Таким образом, решение даёт только первый случай.
🎥 Видео
Решение уравнений вида cos x =aСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Решение простейших тригонометрических уравнений cosx=aСкачать
Как решать tgx=aСкачать
Простейшие тригонометрические уравнения. y=cosx. 2 часть. 10 класс.Скачать
Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать
Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)Скачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Уравнение cosx =aСкачать
10 класс. Решение уравнений tg x =aСкачать
Простейшее тригонометрическое уравнение tgx=aСкачать
Решение уравнения cosx=aСкачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Решения простейших тригонометрих уравнений (sin x = a, cos x = a, tg x = a, ctg x = a) #10классСкачать