Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Примеры решения задач

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Замечание. Ответ к задаче 1 часто записывают в виде:

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

19.3. Уравнения tg x = a и ctg x = a

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Уравнение cos x a где a 1 на отрезке 0 имеет только один кореньфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

таким образом, уравнение ctg x = 0 имеет корни

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Примеры решения задач

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Технологическая карта урока на тему «Уравнение cos x=a»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Технологическая карта урока алгебры для 10 класса по теме

Выполнили: Куляпина Е.С.

Место урока в изучаемой теме : 1 урок из 2 уроков по теме «Уравнение ».

Тип урока: урок изучения нового материала.

Цели урока: сформулировать определение понятия арккосинуса числа, научиться находить арккосинус числа и применять данное понятие при сравнении чисел.

— Предметные : знает определение понятия арккосинуса числа, умеет находить арккосинус числа и применяет данное понятие при сравнении чисел.

Регулятивные: выделяет и осознает то, что уже усвоено и что еще подлежит усвоению, прогнозирование, контроль, коррекция; целеполагание как постановка учебной задачи; планирование, контроль в форме сличения способа действия и его результата с заданным эталоном; оценивает качество и уровень усвоения;

Коммуникативные : умеет выражать свои мысли, умеет планировать учебное сотрудничество с учителем и сверстниками , умеет работать в группе при обсуждении ситуативных задач;

Познавательные: самостоятельно выделяет и формулирует познавательную цель, самостоятельно выделяет и формулирует проблемы, применяет правила и пользуется инструкциями и освоенными закономерностями.

— Личностные : умеет высказывать собственные суждения; умеет слушать и понимать речь других.

Методы обучения: репродуктивный, частично-поисковый.

Формы работы: фронтальная, индивидуальная.

Учебно-информационное обеспечение: учебник (Алгебра и начала математического анализа : 10-11 классы : учеб. для общеобразоват. учреждений : базовый уровень / [Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачева и др.]. – 18-е изд. – М.: Просвещение, 2012. – 464 с.) мультимедиа презентация по теме урока.

Организационный момент (1 мин.)

Актуализация знаний (5 мин.)

Изучение нового материала (12 мин.)

Первичное закрепление (10 мин.)

Самостоятельная работа (5 мин.)

Закрепление изученного материала (8 мин.)

Подведение итогов урока (2 мин.)

Постановка домашнего задания (2 мин.)

1. Организационный момент .

Учитель приветствует учащихся.

-Каково ваше настроение?

-Давайте поприветствуем одноклассников улыбкой и сохраним хорошее настроение в течение всего урока.

Оценивание готовности к уроку, психологический настрой на работу.

планирование учебного сотрудничества с учителем и сверстниками.

2. Актуализация знаний.

Предлагает выполнить учащимся следующие задания.

-Давайте вспомним, как найти координаты точки М, которая лежит на пересечении единичной окружности и одной из сторон угла РОМ, если ?

-А как найти ординату точки М и меру угла РОМ, если известно, что точка М дана на единичной окружности и ее абсцисса равна 1/2.

-Давайте рассмотрим следующее задание. Абсцисса точка М единичной окружности равна 1/2.

-1) Какие координаты имеет точка N ?

-2) Назовите меры каких-нибудь трех углов поворота точки Р(1;0) вокруг точки О(0;0), в результате которых получена точка M ; точка N .

3) Запишите все углы, на которые нужно повернуть точку Р, чтобы получить точку М; точку N .

-Тема нашего урока: Тригонометрические уравнения.

-Откройте тетради, запишите число классная работа и тему урока.

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Уравнение cos x a где a 1 на отрезке 0 имеет только один корень

Тема урока: Тригонометрические уравнения.

Выполняют задания у доски.

-Т.к. и точка М находится в точке пересечения единичной окружности и одной из сторон угла РОМ, то т. М имеет координаты .

-Т.к. точка М находится в первой четверти и ее абсцисса равна 1/2, то ее ордината будет равна . Точка М имеет координаты , такие координаты имеет точка , значит мера угла РОМ равна .

-1) Абсцисса точки N равна 1/2, в 4 четверти абсциссу равную 1/2 имеет точка –π/3, а ее ордината равна -, значит ордината т. N равна

-2) Точка M это точка , данную точку можно получить поворотом точки Р на угол , , .

Точка N это точка — , данную точку можно получить поворотом точки Р на угол , , .

-3) Т.к. т. М это т. , то все углы, на которые нужно повернуть точку Р, можно выразить так:

Т.к. т. М это т. , то все углы, на которые нужно повернуть точку Р, можно выразить так:

Записывают в тетрадях число, классная работа и тему урока.

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками;

выделение и формулирование темы.

3. Изучение нового материала.

Предлагает учащимся решить уравнения вида .

-Что называют косинусом угла?

Абсциссу, равную 1/2, имеют две точки окружности М 1 и М 2 .

-Т.к. , точка М 1 получается из т. Р(1;0) поворотом на угол х 1 =π/3, а также на углы

-Точка М 2 получается из т. Р(1;0) поворотом на угол

-Итак, все корни уравнения

можно найти по формулам

Вместо этих двух формул обычно пользуются одной:

-Т.к. , точка М 1 получается из т. Р(1;0) поворотом на угол х 1 =2π/3, следовательно все корни уравнения можно найти по формуле:

-Таким образом, каждое из уравнений имеет бесконечное множество корней. На отрезке [0; π ] каждое из этих уравнений имеет только один корень.

-Число называют арккосинусом числа 1/2 и записывают

-Число называют арккосинусом числа -1/2 и записывают

-Вообще, уравнение cos x = a , где имеет на отрезке только один корень. Если a ≥0, то корень заключен в промежутке [0; π /2]; если а π /2; π ]. Этот корень называют арккосинусом числа а и обозначают arcos a .

-Сформулируйте определение арккосинуса числа .

-Запишем это определение символьно.

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Алгебра и начала математического анализа. 10 класс

Уравнение cos x = a
Уравнение cos x = a
Необходимо запомнить

Уравнение cos x = a.

На этом уроке вы познакомились с понятием «арккосинус числа» и с некоторыми простейшими тождествами.

Арккосинусом числа m (|m|≤1) называется такое число $alpha$, что: $cos alpha=m$ и $0le alpha le pi$.

Арккосинус числа m обозначают: arccos m.

Простейшие тождества для арккосинуса.

1) $cos(arccos m)=m$ для любого $m: |m| le1$

2) $arccos(cos alpha)=alpha$ для любого $alpha: 0lealphalepi$

3) $arccos(-m)=pi -arccos m$

Вы узнали, как решить простейшее тригонометрическое уравнение $cosalpha=m$:

Решением такого уравнения являются все числа вида

$alpha= pm arccos m + 2 pi k, k epsilon Z$

Уравнение имеет решение в том случае, когда $|m|le1$.

Если $|m|=1$, то уравнение $cosalpha=m$ имеет на отрезке $[0;2pi]$ одно решение.

🔥 Видео

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Уравнение cosx =aСкачать

Уравнение cosx =a

Тригонометрические уравнения. Алгебра 10 класс. cos x = a.Скачать

Тригонометрические уравнения. Алгебра 10 класс. cos x = a.

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

27 1 Уравнение cos x = aСкачать

27 1 Уравнение cos x = a

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Уравнение cos x = aСкачать

Уравнение cos x = a

Простейшее тригонометрическое уравнение cosx=aСкачать

Простейшее тригонометрическое уравнение cosx=a

Решение уравнений вида cos x =aСкачать

Решение уравнений вида cos x =a

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Примеры решения уравнений cos x = a, отбор корней из промежутка.Скачать

Примеры решения уравнений cos x = a, отбор корней из промежутка.

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Находим решение тригонометрического уравнения на интервале Алгебра 10 классСкачать

Находим решение тригонометрического уравнения на интервале Алгебра 10 класс

10 класс - Алгебра - Тригонометрические уравнения. Арккосинус. Решение уравнения cos t = aСкачать

10 класс - Алгебра - Тригонометрические уравнения. Арккосинус. Решение уравнения cos t = a
Поделиться или сохранить к себе: