Уравнение четвертой степени не имеет корней

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Видео:Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )

Теперь найдем корни квадратных трехчленов.

2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i

2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = — 1 2 ± i .

Видео:Решаем быстро и красиво ★ Уравнение четвертой степени ★ x^4+8x-7=0Скачать

Решаем быстро и красиво ★ Уравнение четвертой степени ★ x^4+8x-7=0

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :

A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3

Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .

Решим первое уравнение:

x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4

Решим второе уравнение:

x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2

Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3

Следовательно, x 2 = 1 2 или x 2 = — 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9

Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Видео:8 класс. Алгебра. Решение уравнений четвертой степени.Скачать

8 класс. Алгебра. Решение уравнений четвертой степени.

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Видео:УДИВИТЕЛЬНЫЙ способ решения уравнения ★ Вы такого не видели! ★ Уравнение четвертой степениСкачать

УДИВИТЕЛЬНЫЙ способ решения уравнения ★ Вы такого не видели! ★ Уравнение четвертой степени

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0

Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .

Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .

Видео:10 класс. Алгебра. Уравнение четвертой степени.Скачать

10 класс. Алгебра. Уравнение четвертой степени.

Решение уравнений 4-ой степени. Метод Феррари

Уравнение четвертой степени не имеет корнейСхема метода Феррари
Уравнение четвертой степени не имеет корнейПриведение уравнений 4-ой степени
Уравнение четвертой степени не имеет корнейРазложение на множители. Кубическая резольвента
Уравнение четвертой степени не имеет корнейПример решения уравнения 4-ой степени

Уравнение четвертой степени не имеет корней

Видео:9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.Скачать

9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.

Схема метода Феррари

Целью данного раздела является изложение метода Феррари , с помощью которого можно решать уравнения четвёртой степени

a0x 4 + a1x 3 + a2x 2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем Уравнение четвертой степени не имеет корней

Метод Феррари состоит из двух этапов.

На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Видео:Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Приведение уравнений 4-ой степени

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 4 + ax 3 + bx 2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

Сделаем в уравнении (2) замену

Уравнение четвертой степени не имеет корней(3)

где y – новая переменная.

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Если ввести обозначения

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

то уравнение (4) примет вид

y 4 + py 2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

Первый этап метода Феррари завершён.

Видео:Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби

Разложение на множители. Кубическая резольвента

Добавив и вычитая в левой части уравнения (5) выражение

где s – некоторое число, которое мы определим чуть позже, из (5) получим

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Следовательно, уравнение (5) принимает вид

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

то уравнение (6) примет вид

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Избавляясь от знаменателя, уравнение (7) можно переписать в виде

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

или, раскрыв скобки, — в виде

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

а также квадратное уравнение

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Вывод метода Феррари завершен.

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Пример решения уравнения 4-ой степени

Пример . Решить уравнение

x 4 + 4x 3 – 4x 2 –
– 20x – 5 = 0.
(12)

Решение . В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.(13)

то в результате замены (13) уравнение (12) принимает вид

y 4 – 10y 2 – 4y + 8 = 0.(14)

В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10, q = – 4, r = 8.(15)

В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

которое при сокращении на 2 принимает вид:

s 3 + 5s 2 – 8s – 42 = 0.(16)
s = – 3.(17)

Подставляя значения (15) и (17) в формулу (10), получаем уравнение

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Подставляя значения (15) и (17) в формулу (11), получаем уравнение

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Замечание . При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y 4 – 10y 2 – 4y + 8 =
= (y 2 – 2y – 4) (y 2 +
+ 2y – 2).
(20)

Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

Видео:УДИВИТЕЛЬНЫЙ способ решения уравнения 4-ой степениСкачать

УДИВИТЕЛЬНЫЙ способ решения уравнения 4-ой степени

Формула решения уравнения 4 степени

Уравнение четвертой степени не имеет корней

Существует несколько методов нахождения корней полиномиального уравнения 4-ой степени.
Однако они не очень удобны при решении уравнений с коэффициентами, которые представляют собой выражения с параметрами.

1. Формула решения уравнения 4 степени

Рассмотрим уравнение 4-ой степени, сумма корней которого равна нулю. Коэффициенты могут быть вещественными или комплексными.

Уравнение четвертой степени не имеет корней

Произведение следующих двух квадратов тождественно рассматриваемому уравнению 4-ой степени.

Уравнение четвертой степени не имеет корней

Значение R является решением следующего кубического уравнения.

Уравнение четвертой степени не имеет корней

Почти такое же уравнение появляется при решении уравнения 4-ой степени путем разложения на разность полных квадратов. Будем называть данное кубическое уравнение вспомогательным.

Вычислим произведение двух квадратов new.

Уравнение четвертой степени не имеет корней

То же самое, но в форме коэффициентов при степенях x (в порядке убывания степеней).

Уравнение четвертой степени не имеет корней

Упростим выражения для коэффициентов при второй и первой степени x.

Приведенное выражение для первой степени x.

Уравнение четвертой степени не имеет корней

В итоге получаем k1.

Приведенное выражение для второй степени x.

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Подставив выражение для R^3 получим

Уравнение четвертой степени не имеет корней

Итак, new тождественно уравнению 4-ой степени, сумма корней которого равна нулю.

Осталась проблема со вспомогательным кубическим уравнением.
Конечно можно использовать традиционные методы решения. Но тогда потребуется преобразовывать уравнение к каноническому виду и отдельно рассматривать три варианта решения в зависимости от значений коэффициентов. Для коэффициентов представляющих из себя выражения с параметрами это не всегда удобно.

2. Решение кубического уравнения методом преобразования Чирнгаузена

Рассмотрим решение кубического уравнения не очень широко распространенным методом преобразования Чирнгаузена.

Итак, решаем исходное уравнение

Уравнение четвертой степени не имеет корней

Суть метода заключается в следующих преобразованиях.

1. Вводится уравнение для y

Уравнение четвертой степени не имеет корней

2. Обе части равенства из п.1 умножаются на x

Уравнение четвертой степени не имеет корней

Затем выражение для x^3 заменяется на

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

В общем описанные в п.2 преобразования не являются тождественными. Но если считать интересными только значения x, которые являются корнями исходного уравнения, то данные преобразования можно считать квазитождественными. И тогда y представляется выражением, соответствующим корням исходного уравнения.

3. Для кубического уравнения операция в п.2 производится еще один раз. В итоге получается система из 3 уравнений по x, которая имеет три ненулевых решения, соответствующих корням исходного уравнения. Из коэффициентов x формируем матрицу

Уравнение четвертой степени не имеет корней

4. Находим определитель матрицы, который представляется кубическим выражением по y.
Вычисляем значения, обеспечивающие равенство определителя нулю.

Уравнение четвертой степени не имеет корней

5. В уравнении по y имеются два параметра P и Q. Вычислим их так, чтобы нулю равнялись коэффициенты при второй и первой степени y.

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

6. В итоге имеем уравнение c тремя кратными корнями для y

Уравнение четвертой степени не имеет корней

7. Остается решить квадратное уравнение с известными y, P, Q

Уравнение четвертой степени не имеет корней

Одно из решений будет решением исходного уравнения.

3. Параметры решения вспомогательного кубического уравнения

Для конкретных значений коэффициентов все выглядит не таким страшным образом.

Отметим, что для формулы решения уравнения 4-ой степени требуется только один корень R вспомогательного кубического уравнения.

Для конкретных коэффициентов вспомогательного уравнения имеем

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

Уравнение четвертой степени не имеет корней

При использовании формулы решения уравнения 4-ой степени необходимо ссылаться — «Метод ftvmetrics».

Интересные задачи присылайте в Direct Инстаграмм.

💥 Видео

9 класс. Алгебра. Уравнение четвертой степениСкачать

9 класс. Алгебра. Уравнение четвертой степени

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

9 класс. Алгебра. Решение уравнений четвертой степени.Скачать

9 класс. Алгебра. Решение уравнений четвертой степени.

Уравнение 4 степениСкачать

Уравнение 4 степени

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Как решать возвратные уравнения?Скачать

Как решать возвратные уравнения?

8 класс. Алгебра. Решение уравнений четвертой степени.Скачать

8 класс. Алгебра. Решение уравнений четвертой степени.

9 класс. Алгебра. Решение уравнений четвертой степени.Скачать

9 класс. Алгебра. Решение уравнений четвертой степени.
Поделиться или сохранить к себе: