Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 |
5 С 4 H8+ 10KMnO4 + 15H2SO4 à 5CO2 + 5C3H6O2 + 10MnSO4+ 5 K2SO4 + 20H2O
Рассмотрим окисление бутена -2 перманганатом калия в щелочной среде.
Щелочное окисление алкенов протекает также энергично, как и при кислотном их окислении, расщепляя не только π-, но и σ- связи, образуя соли карбоновых кислот. Степень окисления марганца, как окислителя, понижается до +6, образуя соль манганат калия
СН 3 — CH = CH–CH3 +KMnO4 + КОН à CH3–COO К + K2MnO4+ H2O
Запишем уравнение реакции в молекулярной форме, расставим степень окисления у окислителя и восстановителя (можно у каждого элемента) и подберём коэффициенты методом электронного баланса:
С4-2 H 8 + KMn +7 O 4 + КОН à C 2 0 H 3 O 2 К + K 2 Mn +6 O 4 + H 2 O
Составим электронный баланс:
восстановитель 4С -2 -8 e à 4 C 0 8 1
окислитель Mn +7 + 1 e à Mn +6 1 8
4 C -2 + 8 Mn +7 à 4 C 0 + 8 Mn +6
Запишем уравнение реакции с учётом коэффициентов:
С4 H 8 + 8 KMnO 4 + 10 КОН à 2 C 2 H 3 O 2 К + 8 K 2 MnO 4 + 6 H 2 O
Запишем уравнение реакции в ионной форме и подберём коэффициенты методом электронного- ионного баланса:
С 4 H80 + K+ + MnO4- + K+ + OH — à C2H3O2- + K+ + 2K++ MnO42- + H2O0
Восстановитель С4 H 8 0 + 10 OH — — 8 e à 2 C 2 H 3 O 2 — + 6 H 2 O 0 8 1
Окислитель MnO 4 — +1 e à MnO 4 2- 1 8
С 4 H80 + 10 OH — +8 MnO4- à 2C2H3O2- +6H2O0 + 8MnO42-
Добавим противоположные ионы: к перманганат — иону — катионы калия, к гидроксианионам – катионы калия, ацетат — иону – ионы калия, к манганат-иону — катионы калия
С4 H 8 0 + +8 MnO 4 — + 10 О H — à 2 C 2 H 3 O 2 — + 6 H 2 O 0 +8 MnO 4 2-
8 K + + 10 К+ à 2К+ 16 K +
Запишем уравнение реакции с учётом коэффициентов:
С4 H 8 + 8 KMnO 4 + 10 КОН à 2 C 2 H 3 O 2 К + 8 K 2 MnO 4 + 6 H 2 O
Задания с решениями.
Решение заданий части С1 ЕГЭ 2009 года
С1. Задание. Используя метод электронного баланса, составьте уравнение реакции:
определите окислитель и восстановитель.
1) Определим степень окисления у каждого элемента в веществах
H 2 + S -2 + Cl 2 0 +… à … + H + Cl –
2) Сера в сероводороде является восстановителем, следовательно, степень окисления у восстановителя должна повыситься до максимальной +6, так как окислитель хлор сильный; у хлора, как окислителя степень окисления должна понизиться до -1, что имеем в продуктах реакции ( H + Cl – )
3) Реагирующее вещество сероводород – кислота, следовательно, в продуктах реакции должна быть кислота, где степень окисления +6,- это серная кислота.
4) Составляем электронный баланс:
Восстановитель: S -2 -8 e à S +6 1
Окислитель : Cl20 +2e à 2Cl — 4
S -2 + 4 Cl 2 0 à S +6 + 8 Cl —
Или электронно — ионный баланс:
Восстановитель: S 2- + 4 H 2 O -8 e à SO 4 2- + 8 H + 1
Окислитель : Cl20 +2e à 2Cl — 4
S2- + 4Cl20 + 4H2O à 8Cl- + 8H++ SO42-
(Добавляем противоионы: к сульфид-иону – 2 катионы водорода, к сульфат — иону — 2 катионы водорода)
5) Записываем уравнение реакции с учётом коэффициентов:
H 2 S + 4 Cl 2 + 4 H 2 O à H 2 SO 4 + 8 HCl
Окислительные свойства пероксида водорода.
2. Нейтральная среда.
1. 2 KI + H 2 O 2 à I 2 + 2 KOH
H2O2 + 2 ē à 2OH — 1
2I — + H2O2 à I2+ 2OH —
Практическая часть. Задания ЕГЭ — 2007 г.
1) Обе частицы содержат атом азота в одинаковой степени окисления:
10) С12 + КОН t à
11) Н2 O 2 + АиС1з +. à Аи+.
12) К I + КМп O 4 + Н2 SO 4 à М nSO4 + .
13) КМ nO 4 + . + КОН à К2Мп O 4 + К NO3 +.
14) Н2 SO 4 + FeS2 à
15) Н NO 2 + Н I à N О + I 2 +.
16) Н NO 2 + С12 +. à Н NO 3 + НС lO4
17) К NO2 + FeSO4 + Н 2 SO4 à NO + F е 2 (SO4)3 + К 2 SO4 + .
18) NaNO 2 + КМп O 4 + . à N а N Оз + М nSO 4 + К2 SO 4
Окисление органических веществ.
1 . A лкенов.
1) СН2=СН2 + КМп O 4 + Н2 O à . + СН2 O Н-СН2 O Н + .
2) СН2 = СН2 + КМп O 4 + Н2 SO 4 à С O 2 +. + . + Н2 O
3) Н3С — СН = СН2 + КМп O 4 + ….. à К2 SO 4 +. + С O 2 + . + СН3СООН
1) НС≡ СН + КМ nO 4 + Н2 O à . + КОН + НООС-СООН
2) CH3 — C≡CH + КМ nO4 +….. à CH3COOK + K2CO3 + ….+….
1) СНз — СН2ОН + КМп O 4 à М nO 2 + КОН + СН3 СОН + ….
2) СН3ОН + КМп O 4 + Н2 SO 4 à H СНО + . + Мп S 04 +.
1) С6Н12 O 6 + КМп O 4 + Н2 SO 4 à С O 2 +. + Н2О +.
5.Аренов.
1) С7Н8 + КМп O 4 + Н2 SO 4 à С7Н6 O 2 +. + Н2 O +.
2) С8Н10 + К2Мп O 4 + Н2 SO 4 à С6Н5СООН +….. + Н2 O + . + С02
3) С7Н8 + КМп O 4 + …. à С6Н5СОО K +……. Н2 O + . .
- Химические свойства алкенов
- Химические свойства алкенов
- 1. Реакции присоединения
- 1.1. Гидрирование
- 1.2. Галогенирование алкенов
- 1.3. Гидрогалогенирование алкенов
- 1.4. Гидратация
- 1.5. Полимеризация
- 2. Окисление алкенов
- 2.1. Каталитическое окисление
- 2.2. Мягкое окисление
- 2.2. Жесткое окисление
- 2.3. Горение алкенов
- 3. Замещение в боковой цепи
- 4. Изомеризация алкенов
- Acetyl
- 🎥 Видео
Видео:ОКИСЛЕНИЕ АЛКЕНОВ ЕГЭ / жёсткое, мягкое окисление в органике с KMnO4Скачать
Химические свойства алкенов
Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.
Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.
Видео:Самые сложные ОВР с перманганатом калия | Химия ЕГЭ 2023 | УмскулСкачать
Химические свойства алкенов
Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.
Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:
Энергия связи, кДж/моль | Длина связи, нм | |
С-С | 348 | 0,154 |
С=С | 620 | 0,133 |
Можно примерно оценить энергию π-связи в составе двойной связи С=С:
Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.
Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).
Видео:Окисление органических соединений перманганатом калияСкачать
1. Реакции присоединения
Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.
1.1. Гидрирование
Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).
Например, при гидрировании бутена-2 образуется бутан. |
Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление. |
1.2. Галогенирование алкенов
Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).
При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь. |
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан. |
Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.
1.3. Гидрогалогенирование алкенов
Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.
Например, при взаимодействии этилена с бромоводородом образуется бромэтан. |
При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.
Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи. |
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан. |
1.4. Гидратация
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Например, при взаимодействии этилена с водой образуется этиловый спирт. |
Гидратация алкенов также протекает по ионному (электрофильному) механизму.
Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.
Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2. |
1.5. Полимеризация
Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).
nM → Mn (M – это молекула мономера)
Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен. |
Видео:ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок ХимииСкачать
2. Окисление алкенов
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
2.1. Каталитическое окисление
Каталитическое окисление протекает под действием катализатора.
Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида) |
Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида |
2.2. Мягкое окисление
Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.
В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.
При этом образуются двухатомные спирты (диолы).
Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2) |
2.2. Жесткое окисление
При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.
Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.
Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:
Окисляемый фрагмент | KMnO4, кислая среда | KMnO4, H2O, t |
>C= | >C=O | >C=O |
-CH= | -COOH | -COOK |
CH2= | CO2 | K2CO3 |
При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:
При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:
При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).
Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия: |
Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон: |
Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.
2.3. Горение алкенов
Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.
В общем виде уравнение сгорания алкенов выглядит так:
Например, уравнение сгорания пропилена: |
3. Замещение в боковой цепи
Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.
При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.
Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1 |
4. Изомеризация алкенов
При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.
Видео:Окисление алкенов с Тасей | Химия ЕГЭСкачать
Acetyl
Привет! Я Виктор.
Я пишу этот сайт с 2013 года для вас
Если вам нравится то, что я делаю, вы можете:
Это сообщение исчезнет завтра на неделю
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
H + | Li + | K + | Na + | NH4 + | Ba 2+ | Ca 2+ | Mg 2+ | Sr 2+ | Al 3+ | Cr 3+ | Fe 2+ | Fe 3+ | Ni 2+ | Co 2+ | Mn 2+ | Zn 2+ | Ag + | Hg 2+ | Pb 2+ | Sn 2+ | Cu 2+ | |
OH — | Р | Р | Р | Р | Р | М | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | — | — | Н | Н | Н | |
F — | Р | М | Р | Р | Р | М | Н | Н | М | М | Н | Н | Н | Р | Р | Р | Р | Р | — | Н | Р | Р |
Cl — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | Р | М | Р | Р |
Br — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | М | М | Р | Р |
I — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | Р | ? | Р | Р | Р | Р | Н | Н | Н | М | ? |
S 2- | М | Р | Р | Р | Р | — | — | — | Н | — | — | Н | — | Н | Н | Н | Н | Н | Н | Н | Н | Н |
HS — | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | Н | ? | ? | ? | ? | ? | ? | ? |
SO3 2- | Р | Р | Р | Р | Р | Н | Н | М | Н | ? | — | Н | ? | Н | Н | ? | М | М | — | Н | ? | ? |
HSO3 — | Р | ? | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
SO4 2- | Р | Р | Р | Р | Р | Н | М | Р | Н | Р | Р | Р | Р | Р | Р | Р | Р | М | — | Н | Р | Р |
HSO4 — | Р | Р | Р | Р | Р | Р | Р | Р | — | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | Н | ? | ? |
NO3 — | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | — | Р |
NO2 — | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | Р | М | ? | ? | М | ? | ? | ? | ? |
PO4 3- | Р | Н | Р | Р | — | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н |
CO3 2- | Р | Р | Р | Р | Р | Н | Н | Н | Н | ? | ? | Н | ? | Н | Н | Н | Н | Н | ? | Н | ? | Н |
CH3COO — | Р | Р | Р | Р | Р | Р | Р | Р | Р | — | Р | Р | — | Р | Р | Р | Р | Р | Р | Р | — | Р |
SiO3 2- | Н | Н | Р | Р | ? | Н | Н | Н | Н | ? | ? | Н | ? | ? | ? | Н | Н | ? | ? | Н | ? | ? |
Растворимые (>1%) | Нерастворимые ( Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время. Вы можете также связаться с преподавателем напрямую: 8(906)72 3-11-5 2 Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте. Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши. Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить». Этим вы поможете сделать сайт лучше. На сайте есть сноски двух типов: Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего. Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения. Здесь вы можете выбрать параметры отображения органических соединений. 🎥 ВидеоВсе ОВР с перманганатом для ЕГЭ 2023 | Интенсив | Екатерина Строганова | 100балльныйСкачать 248. Химические свойства алкинов на примере бутина.Скачать Жёсткое окисление алкенов, алкинов, алкадиеновСкачать ОВР 5 занятие Окисление алкеновСкачать Задание №32 в ЕГЭ | Химия ЕГЭ для 10 класса | УмскулСкачать окисление бутина-1 в кислой среде, c4h6+kmo4+h2so4Скачать Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКАСкачать Окисление органических веществ | Химия ЕГЭ для 10 класса | УмскулСкачать Алкены.Окисление алкенов с KMnO4 и K2Cr2O7. Все 14 реакций ЕГЭ.Скачать Все задания №32 из сборника ЕГЭ 2023 (часть 1) | Химия ЕГЭ для 10 класса | УмскулСкачать Химия с нуля — Химические свойства АлкеновСкачать Практика: задания по органической химии | Химия ЕГЭ 10 класс | УмскулСкачать Химия ЕГЭ 2022 / Задание 32Скачать окисление алкенов в кислой средеСкачать окисление алкенов в кислой средеСкачать |