Уравнение биссектрисы второй и четвертой четвертей

Уравнение биссектрисы второй и четвертой четвертей

Какое соотношение существует между координатами точки, если она лежит:
а) на биссектрисе первого и третьего координатных углов;
б) на биссектрисе второго и четвертого координатных углов?

а) Биссектриса первого и третьего координатных углов делит эти углы пополам и с положительным направлением оси Ox составляет угол в 45 градусов. Если из любой точки A(x, y) этой биссектрисы опустить перпендикуляр на ось Ox, то треугольник OAB будет равнобедренным прямоугольным треугольником, и потому его катеты OB и AB между собой равны (см. рисунок, а)). Так как катет OB есть абсцисса точки A, а катет AB — ее ордината (координатами точки могут быть не только числа, но и отрезки, измеренные единицей масштаба), то заключение состоит в том, что абсцисса и ордината любой точки этой биссектрисы между собой равны, причем это верно независимо от того, находится ли точка A в первом координатном углу или в третьем, так как в каждом из них абсцисса и ордината точки имеют один и тот же знак. Итак, для координат точек этой биссектрисы имеет место равенство x = y.

Уравнение биссектрисы второй и четвертой четвертей

б) Для точек биссектрисы второго и четвертого координатных углов, аналогично рассуждая, придем к заключению, что абсцисса и ордината любой точки на этой биссектрисе также равны между собой по абсолютной величине, но противоположны по знаку, что следует из таблицы знаков абсциссы и ординаты во второй и четвертой четвертях:

ЧетвертиIIIV
x+
y+

Таким образом, для координат точек, лежащих на этой биссектрисе, выполняется равентство x = —y.

Видео:Найдите биссектрису треугольникаСкачать

Найдите биссектрису треугольника

Уравнение биссектрисы в треугольнике — формула, свойства и решение задач

Треугольник является одной из самых простых фигур, которая часто встречается школьникам в задачах по геометрии. В свою очередь, биссектриса представляет собой важный элемент, характеризующий тот или иной угол. Решение геометрических проблем с участием этих объектов требует наличия определенных знаний. Чтобы уметь составлять по координатам вершин уравнение биссектрисы треугольника, необходимо понимать выражения для прямых линий.

Уравнение биссектрисы второй и четвертой четвертей

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Прямая на плоскости

Задачи по геометрии могут относиться к одному из двух принципиально отличающихся случаев. Это следующие:

  • На плоскости, где достаточно двух координат для описания любых геометрических объектов.
  • В трехмерном пространстве, где любая точка имеет три координаты.

    Когда рассматривают треугольники и их элементы, то в ряде ситуаций речь идет именно о двумерном пространстве. В нем всякая прямая линия может быть выражена в виде нескольких математических форм или уравнений. Чаще всего используются следующие типы:

    Уравнение биссектрисы второй и четвертой четвертей

  • Общий. Он также называется универсальным. Прямая представляет собой следующую математическую запись: A*x + B*y + C = 0. Здесь A, B, C — числовые коэффициенты, x и y — переменные, являющиеся координатами. Сразу нужно отметить, что эта форма представления прямой используется для составления уравнения биссектрисы угла. Для удобства геометрического изображения общую форму записи часто представляют в виде y = f (x). Нужно понимать, что указанной форме в пространстве соответствует не прямая, а плоскость.
  • Канонический или уравнение в отрезках. Имеет оно такой вид: y/p + x/q = 1. Здесь p, q — это координаты, в которых прямая пересекает оси y и x, соответственно, поэтому удобно ее изображать в координатной системе.
  • Векторный. Это один из важных типов представления прямой как на плоскости, так и в пространстве. По сути, он является исходным представлением, из которого можно получить все остальные. Математически он записывается так: (x, y) = (x0, y0) + α*(v1, v2). Где (x0, y0) — координаты произвольной точки, которая лежит на прямой, (v1, v2) — направляющий вектор, он параллелен заданной прямой, α — произвольное число, параметр.
  • Параметрический. Этот тип представляет собой систему уравнений, которую удобно использовать во время преобразования одного вида прямой в другой. Представляет он собой следующую математическую запись: x = x0 + α*v1; y = y0 + α*v2. Несложно понять, что, выражая параметр α, можно получить уравнения общего вида и в отрезках. Объединяя же систему уравнений в одно выражение, получается векторная форма записи прямой.

    Видео:найти уравнения биссектрис углов между прямымиСкачать

    найти уравнения биссектрис углов между прямыми

    Делящая пополам угол линия

    Каждый школьник, который знаком с азами геометрии, знает, что прямая, делящая на две равные части произвольный угол, называется биссектрисой. Этот элемент присутствует для любой фигуры, которая в своем составе содержит какой-либо угол.

    Другое определение биссектрисы гласит, что она представляет собой геометрическое расположение точек, которые равноудалены от соответствующих сторон углового объекта. Например, если имеется угол dac, то любая из точек биссектрисы находится на одинаковом расстоянии как от отрезка da, так и от отрезка ac.

    Уравнение биссектрисы второй и четвертой четвертей

    Способы построения

    В классах общеобразовательных школ рассматривают два основных способа построения биссектрисы. Это следующие:

    Уравнение биссектрисы второй и четвертой четвертей

  • С помощью транспортира. Для этого следует измерить заданный угол в градусах, разделить его пополам. Полученное значение отметить в виде точки. Затем соединить вершину угла и поставленную точку внутри него. Получится искомый элемент.
  • С использованием циркуля и линейки. Эти инструменты еще проще применять для построения биссектрисы, чем транспортир. Сначала необходимо установить в вершину угла ножку циркуля и отметить дугами пересечение окружности со сторонами. Затем, в точки пересечения поставить ножку циркуля и провести две окружности. Соединив две точки их пересечения одной прямой, можно получить биссектрису.

    Имеется еще один метод, который позволяет просто начертить изучаемый линейный элемент. Для его использования нужна линейка со шкалой. С помощью нее следует от вершины угла отмерить два одинаковых отрезка любой длины. Затем соединить концы этих отрезкой, получится равнобедренный треугольник.

    В нем любая биссектриса также является высотой и медианой. Поэтому, разделив его ровно пополам линейкой, и соединив полученную точку с вершиной, можно получить требуемую линию.

    Основные свойства

    Чтобы найти по координатам вершин длину биссектрисы треугольника, следует знать некоторые свойства этого геометрического объекта. Главным из них является существование двух линий, которые делят пополам исходный угол. Нужно понимать, что угол бывает не только внутренний, но и внешний. По сути, оба типа образуются при пересечении двух прямых. Нетрудно доказать, что биссектрисы каждого из них пересекаются всегда под углом 90 °.

    Еще одним важным свойством является тот факт, что пересекаются в одной точке биссектрисы треугольника. Она представляет собой центр вписанной в фигуру окружности. Чтобы это доказать, следует вспомнить, что каждая точка биссектрисы равноудалена от соответствующих сторон угла.

    Уравнение биссектрисы второй и четвертой четвертей

    Пусть имеется треугольник ABC. У него две биссектрисы пересекаются в точке O. Пусть это будут линии для углов A и B. Расстояние от O до AC должно быть равно таковому от O до AB. С другой стороны, расстояния от O до AB и до BC также одинаковые. Поэтому дистанции от O до BC и до AB также равны, а значит, точка O лежит на биссектрисе угла C и центром вписанной окружности является.

    В треугольнике рассматриваемый геометрический элемент используется часто для решения задач благодаря применению так называемой теоремы биссектрис. Чтобы ее сформулировать максимально простым языком, следует представить, что имеется треугольник произвольного типа ABC. В нем проведена биссектриса AD, где точка D лежит на прямой BC. Тогда справедливо следующее выражение:

    Уравнение биссектрисы второй и четвертой четвертей

    Это равенство не является очевидным, однако, оно было известно еще древнегреческим мыслителям. Эту теорему в несколько иной форме можно встретить в знаменитом труде по геометрии Евклида, который называется «Элементы». Доказательство равенства несложно провести с использованием небольших дополнительных построений и применением признаков подобия треугольников.

    Наконец, отрезок биссектрисы, который заключен между вершиной и противоположной стороной треугольника, имеет определенную длину. Вычислить ее можно с использованием следующего равенства:

    Это равенство прописано для угла A треугольника ABC, в котором противоположная A сторона имеет длину a. Стороны AB и AC имеют длины c и b, соответственно. Буквой p обозначен полупериметр фигуры.

    Важно понимать, если нарисовать прямоугольный параллелепипед (или иную фигуру) в пространстве, и построить биссектрису для его граней, она будет представлять собой не прямую, а плоскость.

    Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    Уравнение биссектрисы треугольника

    Когда известно, как математически записывать выражения для прямых, и что такое биссектриса, и какими свойствами она обладает, можно переходить к непосредственному нахождению ее уравнения.

    В общем случае задача решается в результате применения следующей последовательности действий (существуют онлайн-ресурсы, позволяющие решить данную проблему):

    Уравнение биссектрисы второй и четвертой четвертей

  • Сначала требуется определить уравнения двух сторон угла по их координатам. Это легко сделать в векторной форме, а затем, преобразовать ее в выражение общего типа.
  • Далее, необходимо найти уравнение биссектрис первого координатного угла, прировняв расстояния от ее точек до соответствующей стороны. Рабочая формула имеет вид: |A1*x + B1*y + C|/(A1 2 + B1 2 )^0,5 = |A2*x + B2*y + C|/(A2 2 + B2 2 )^0,5. Следует обратить внимание на наличие двух различных решений этого равенства, поскольку в числителе стоит модульное выражение. Два полученных уравнения говорят о наличии взаимно перпендикулярных биссектрис для углов треугольника внутреннего и внешнего.
  • Для внутреннего угла искомое уравнение можно найти, если определить точку пересечения соответствующей прямой с противоположной исходному углу стороной треугольника. Та точка, сумма расстояний от которой до концов отрезка будет равна длине стороны, принадлежит искомой биссектрисе.

    Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

    Реакция на результаты ЕГЭ 2022 по русскому языку

    Пример решения задачи

    Пусть, треугольник задан координатами A (1, -1), B (0, -2), C (3,0). Следует уравнение биссектрисы найти для угла B и ее длину вычислить.

    Сначала нужно написать уравнения прямых для сторон AB и CB, получается:

    • AB: (x, y) = (1, -1) + α*(-1, -1) ==> y — x + 2 = 0;
    • CB: (x, y) = (3, 0) + α*(-3, -2) ==> 3*y — 2*x + 6 = 0.

    Уравнение биссектрисы второй и четвертой четвертей

    Составить уравнения биссектрис можно так:

    | y — x + 2 |/(2)^0,5 = | 3*y — 2*x + 6 |/(13)^0,5.

    Решение этого уравнения приводит к следующим двум выражениям для взаимно перпендикулярных биссектрис:

    • y*(6−3*3 0,5 ) + x*(3*3 0,5 −4)+12−6*3 0,5 = 0;
    • y*(3*3 0,5 +6) -x*(4+3*3 0,5 )+12+6*3 0,5 = 0.

    Чтобы определить, какая из двух прямых является искомой для треугольника заданного, следует точку пересечения каждой из них со стороной AC найти. Уравнение для AC имеет вид:

    Подставляя его в каждое из выражений для биссектрис, можно получить две точки пересечения:

    При этом длина основания AC составляет 2,236 единицы через единичный вектор. Расстояние от точек D1 и D2 до A, C равно:

    Уравнение биссектрисы второй и четвертой четвертей

    • D1A = 1,4; D1C = 3,635;
    • D2A = 0,621; D2C = 1,614.

    Видно, что точка пересечения второй прямой D2 лежит между A и C, поэтому соответствующее ей уравнение биссектрисы является ответом на задачу. Ее длину можно вычислить по формуле для модуля вектора BD2:

    BD2 = 2,014 единицы.

    Таким образом, для определения в треугольнике биссектрисы уравнения по координатам следует уметь находить векторную форму выражений для прямой по координатам двух точек. Также нужно знать свойства делящей пополам угол линии.

    Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Формулы для вычисления длины биссектрисы треугольника

    Уравнение биссектрисы второй и четвертой четвертей

    Формулы для вычисления длины биссектрисы треугольника

    Можно вывести различные формулы, с помощью которых можно вычислить длину биссектрисы треугольника, если известны:

    Уравнение биссектрисы второй и четвертой четвертей

    · длины прилежащих сторон и угол между ними

    Уравнение биссектрисы второй и четвертой четвертей

    Уравнение биссектрисы второй и четвертой четвертей

    · длины прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону

    Уравнение биссектрисы второй и четвертой четвертей

    Уравнение биссектрисы второй и четвертой четвертей

    · длины трех сторон треугольника.

    Уравнение биссектрисы второй и четвертой четвертей

    Докажем первую из формул.

    Задача 1. Вычислить длину биссектрисы треугольника, если известны длинны двух прилежащих сторон треугольника и угол между ними.

    Решение. Пусть в треугольнике АВС известно, что

    Уравнение биссектрисы второй и четвертой четвертей.

    Уравнение биссектрисы второй и четвертой четвертей

    Обозначим биссектрису AD через la .

    Уравнение биссектрисы второй и четвертой четвертей

    Уравнение биссектрисы второй и четвертой четвертей

    Уравнение биссектрисы второй и четвертой четвертей.

    Используя формулу синуса двойного угла, получаем:

    Уравнение биссектрисы второй и четвертой четвертей.

    Уравнение биссектрисы второй и четвертой четвертей

    Ответ: Уравнение биссектрисы второй и четвертой четвертей.

    Выражение Уравнение биссектрисы второй и четвертой четвертейназывается средним гармоническим чисел а и с. Поэтому формулу Уравнение биссектрисы второй и четвертой четвертейможно запомнить следующим образом:

    биссектриса треугольника равна произведению среднего гармонического прилежащих сторон треугольника на косинус половинного угла между ними.

    Доказательство остальных формул можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».

    Задача 2. Вычислите биссектрису треугольника ABC, проведённую из вершины А, если ВС = 18, АС = 15, АВ = 12.

    Решение. Воспользуемся формулой для вычисления биссектрисы угла, если известны три стороны треугольника: Уравнение биссектрисы второй и четвертой четвертейУравнение биссектрисы второй и четвертой четвертей

    Уравнение биссектрисы второй и четвертой четвертей

    Задача 3. Определить площадь треугольника, если две его стороны равны 35 см и 14 см, а биссектриса угла между ними содержит 12 см.

    Уравнение биссектрисы второй и четвертой четвертей

    Пусть в треугольнике АВС АС=35, АВ=14, AD — биссектриса, AD=12.

    Уравнение биссектрисы второй и четвертой четвертей,

    Вычислим Уравнение биссектрисы второй и четвертой четвертей, получаем:

    Уравнение биссектрисы второй и четвертой четвертей, Уравнение биссектрисы второй и четвертой четвертей.

    Уравнение биссектрисы второй и четвертой четвертей(по основному тригонометрическому тождеству).

    Далее по формуле синуса двойного угла вычисляем

    Уравнение биссектрисы второй и четвертой четвертей.

    Для вычисления площади треугольника воспользуемся формулой Уравнение биссектрисы второй и четвертой четвертей.

    Уравнение биссектрисы второй и четвертой четвертей

    Задача 4. . В равнобедренном треугольнике BCD с основанием BD

    проведена биссектриса BE. Известно, что СЕ = 20 и DE = 10. Найдите BE.

    Уравнение биссектрисы второй и четвертой четвертей

    Используя свойство биссектрисы угла треугольника (урок 4), получаем

    Уравнение биссектрисы второй и четвертой четвертей, то есть Уравнение биссектрисы второй и четвертой четвертей.

    Таким образом, нам известны длины двух прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону, поэтому Уравнение биссектрисы второй и четвертой четвертей

    Ответ :Уравнение биссектрисы второй и четвертой четвертей.

    Задачи для самостоятельного решения

    1. Дан треугольник со сторонами 4, 8, 9. Найти длину биссектрисы, проведенной к большей стороне.

    2. В треугольнике ABC известно, что АВ = 10, АС = 15, Уравнение биссектрисы второй и четвертой четвертейBAC = 120°. Найдите биссектрису AD.

    3. Катеты прямоугольного треугольника равны 6 и 8. Найдите биссектрису треугольника, проведённую из вершины прямого угла.

    4. В равнобедренном треугольнике BCD с основанием BD проведена биссектриса BE. Известно, что СЕ = 18 и DE = 12. Найдите BE.

    🔥 Видео

    №973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

    №973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

    Формула для биссектрисы треугольникаСкачать

    Формула для биссектрисы треугольника

    Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.Скачать

    Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.

    Высота, биссектриса, медиана. 7 класс.Скачать

    Высота, биссектриса, медиана. 7 класс.

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

    Уравнение биссектрисы углаСкачать

    Уравнение биссектрисы угла

    Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

    Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

    Построение биссектрисы углаСкачать

    Построение биссектрисы угла

    Бестселлер Все правила по геометрии за 7 классСкачать

    Бестселлер Все правила по геометрии за 7 класс

    Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

    Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

    Математика без Ху!ни. Уравнение плоскости.Скачать

    Математика без Ху!ни. Уравнение плоскости.

    КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

    КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

    Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

    Математика без Ху!ни. Кривые второго порядка. Эллипс.

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика
  • Поделиться или сохранить к себе: