Уравнение бернулли в дифференциальной форме аэродинамика

Уравнение Бернулли для сжимаемого газа

Уравнения аэродинамики больших скоростей

Уравнение Бернулли для сжимаемого газа

Рассмотрим идеальное течение газа без вязкости. Кроме того, будем считать газ легким, следовательно, в нем будут отсутствовать массовые силы.

В потоке газа выделим элементарную струйку, ограниченную трубкой тока (рис.1.1). Здесь нужно вспомнить эти понятия основ аэродинамики и динамики полета.

Линия тока – кривая в потоке газа, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.

Трубка тока – поверхность, образованная линиями тока, проведенными через все точки произвольного замкнутого контура площадью dS. Трубка тока считается непроницаемой для воздушных частиц.

Элементарная струйка – часть потока газа, ограниченная трубкой тока.

В связи с этим можно считать, что поток газа состоит из совокупности элементарных струек.

Уравнение бернулли в дифференциальной форме аэродинамика

Рис.1.1 Элементарная струйка в потоке газа

Запишем для элементарной струйки 2-ой закон Ньютона

Уравнение бернулли в дифференциальной форме аэродинамика, (1.1)

который показывает, что произведение массы (газа) на ускорение равно сумме всех сил, действующих на тело (в данном случае – элементарную струйку). Проведем анализ данного уравнения (рис.1.2).

Уравнение бернулли в дифференциальной форме аэродинамика

Рис.1.2 К выводу уравнения Бернулли для потока сжимаемого газа

В правой части уравнения (1.1) на элементарную струйку действуют силы давления по площадкам dS1, и dS2 , которые можно считать равными

Уравнение бернулли в дифференциальной форме аэродинамика.

По боковым поверхностям элементарной струйки силами давления пренебрегаем, так как они взаимно уравновешиваются. Силами трения (идеальный газ) и силами тяжести (легкий газ) также пренебрегаем.

Уравнение бернулли в дифференциальной форме аэродинамикаили учитывая

Уравнение бернулли в дифференциальной форме аэродинамика,

Уравнение бернулли в дифференциальной форме аэродинамика.

Учитывая Уравнение бернулли в дифференциальной форме аэродинамикаи сокращая на dS, имеем

Уравнение бернулли в дифференциальной форме аэродинамика. Перенося – dp в левую часть уравнения, и разделив обе части уравнения на Уравнение бернулли в дифференциальной форме аэродинамика, получим

Уравнение бернулли в дифференциальной форме аэродинамика. (1.2)

Внося скорость V под знак дифференциала, получим

Уравнение бернулли в дифференциальной форме аэродинамика. (1.3)

Уравнения (1.2) и (1.3) являются двумя формами записи уравнения Бернулли для газа в дифференциальном виде. Вспомним, что в основе уравнения Бернулли лежит закон сохранения энергии.

Современные магистральные ВС (Ту-204, Airbus A320 и др.) летают с достаточно большими скоростями. При числах Маха М>0,4 плотность газа начинает изменяться, и движение газа уже нельзя считать движением несжимаемой жидкости.

Чтобы найти конечные величины p и V или связь между этими параметрами в дифференциальном уравнении Бернулли, необходимо проинтегрировать уравнение (1.3)

Уравнение бернулли в дифференциальной форме аэродинамика. (1.4)

Для сжимаемого течения зависимость между p и r (без определения которой нельзя выполнить интегрирование) имеет вид

Уравнение бернулли в дифференциальной форме аэродинамика

Для изоэнтропного (энтропия S не меняется), энергоизолированного (над газом не совершается работа) течения вместо показателя политропы n можно подставить k, и тогда интегрирование уравнения (1.4) можно выполнить.

В случае сжимаемого газа, когда плотность газа уже непостоянна, уравнение (1.4) после интегрирования преобразуется к виду

Уравнение бернулли в дифференциальной форме аэродинамика(1.5)

где k – постоянная изоэнтропы (адиабаты) и для воздуха равна 1,4.

Это и есть уравнение Бернулли для потока сжимаемого газа.

Величина Уравнение бернулли в дифференциальной форме аэродинамикав формуле (1.5) учитывает влияние сжимаемости. Для газа как несжимаемой жидкости при М

ПВД измеряют скоростной напор набегающего потока

Уравнение бернулли в дифференциальной форме аэродинамика

Уравнение бернулли в дифференциальной форме аэродинамика. (1.7)

Здесь q – скоростной напор,

Dp – перепад давления или разность между полным и статическим давлением,

r – плотность воздуха на данной высоте,

V – скорость воздушного потока.

Однако указатель скорости измеряет не саму скорость, а скоростной напор Уравнение бернулли в дифференциальной форме аэродинамика. Поскольку при изменении высоты и скорости существенно изменяется плотность r, что происходит при полете магистральных ВС, то при измерении скорости полета возникают погрешности.

Воздушная (истинная) скорость полета V не совпадает с той скоростью, которую показывает прибор, т.к. на ПВД оказывает влияние создаваемые самолетом возмущения, а также сжимаемость воздуха. Кроме того, величина воздушной скорости зависит от инструментальной и других поправок.

Градуировка приборов для измерения скорости соответствует лишь полету у земли, когда Н = 0, а Уравнение бернулли в дифференциальной форме аэродинамика(или 1,225 Уравнение бернулли в дифференциальной форме аэродинамика). При наборе высоты плотность падает и r

Индикаторная скорость в аэродинамике – это идеальная скорость, которую показывает прибор с учетом всех поправок.

Видео:10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Элементы гидро- и аэродинамики

Для того, чтобы описать такой сложный процесс, как движение жидкостей или газов, применяют разного рода упрощенные модели. Например, для упрощения используется предположение, что жидкость или даже газ несжимаемы и идеальны, не имеют внутреннее трение между слоями, которые движутся. Когда такая идеальная жидкость находится в движении, отсутствует переход механической энергии во внутреннюю, т.е. имеет место выполнение закона сохранения механической энергии. В свою очередь, из этого закона для стационарного потока идеальной и несжимаемой жидкости вытекает уравнение (принцип) Бернулли, которое было сформулировано в 1738 г.

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Элементы гидродинамики. Уравнение Бернулли

Стационарный поток жидкости – это поток без образования вихрей. В этом случае частицы жидкости осуществляют перемещение по постоянным во времени траекториям, называемым линиями тока.

В рамках имеющегося опыта можно утверждать, что возникновение стационарных потоков возможно лишь тогда, когда скорость движения жидкости достаточно мала.

Возьмем для рассмотрения стационарное течение идеальной несжимаемой жидкости по трубе переменного сечения (рис. 1 . 22 . 1 ). Различные части трубы располагаются на разных высотах.

Уравнение бернулли в дифференциальной форме аэродинамика

Рис. 1 . 22 . 1 . Поток идеальной жидкости в трубе переменного сечения.

Рассматриваемая труба имеет два сечения: S 1 и S 2 ; Δ t — это время прохождения жидкости в трубе. Так, за Δ t через сечение S 1 жидкость осуществит перемещение на l 1 = υ 1 Δ t ; через сечение S 2 – на l 2 = υ 2 Δ t ( υ 1 и υ 2 – обозначение скоростей частиц жидкости в трубе соответствующих сечений). Условие несжимаемости будет иметь следующую запись: Δ V = l 1 S 1 = l 2 S 2 или υ 1 S 1 = υ 1 S 1 , где Δ V является объемом жидкости, прошедшей через сечения S 1 и S 2 .

С переходом жидкости из участка трубы большего сечения в участок меньшего сечения скорость движения потока увеличивается: жидкость перемещается с ускорением. Это означает, что жидкость испытывает воздействие силы. Если речь идет о движении потока в горизонтальной трубе, можно утверждать, что возникновение этой силы возможно только как следствие разности давления в широком и узком участках трубы (в широком участке давление должно быть больше, чем в узком). В случае же, когда различные участки трубы располагаются на разной высоте, ускорение потока обусловлено совокупным воздействием силы тяжести и силы давления.

Сила давления есть упругая сила сжатия жидкости.

Явление несжимаемости жидкости означает только то, что возникновение упругих сил имеет место при пренебрежимо малом изменении объема любой части жидкости.

Поскольку действует предположение, что жидкость идеальна, ее протекание по трубе происходит без трения, а значит к ее движению уместно применять закон сохранения механической энергии.

В процессе движения жидкости силы давления выполняют работу, которую запишем так:

Δ A = p 1 S 1 l 1 – p 2 S 2 l 2 = p 1 S 1 υ 1 Δ t — p 2 S 2 υ 2 Δ t = ( p 1 – p 2 ) Δ V .

Работа Δ A сил давления есть изменение потенциальной энергии упругой деформации жидкости, взятое с обратным знаком.

Те изменения, которые происходят за промежуток времени Δ t в выделенной части жидкости, помещенной между участками трубы с сечениями S 1 и S 2 в начальный момент времени, в случае стационарного течения заключаются в перемещении массы жидкости Δ m = ρ Δ V из участка с сечением S 1 в участок сечением S 2 ( ρ – плотность жидкости). На рисунке 1 . 22 . 1 соответствующие объемы обозначены штриховкой. Закон сохранения механической энергии для этой массы будет иметь запись: E 2 – E 1 = Δ A = ( p 1 – p 2 ) Δ V . E 1 и E 2 здесь являются полными механическими энергиями массы Δ m в поле тяготения и записываются так:

E 1 = ∆ m v 1 2 2 + ∆ m g h 1 ; E 2 = ∆ m v 2 2 2 + ∆ m g h 2 .

Откуда можно вывести:

p v 1 2 2 + p g h 1 + p 1 = p v 2 2 2 + p g h 2 + p 2 .

Выражение p v 1 2 2 + p g h 1 + p 1 = p v 2 2 2 + p g h 2 + p 2 называется уравнением Бернулли.

Из уравнения Бернулли следует, что: p v 2 2 + p g h + p = c o n s t на всей протяженности рассматриваемой трубы. В частном случае, когда труба расположена горизонтально, уравнение Бернулли принимает вид: p v 2 2 + p = c o n s t .

Величина p обозначает статическое давление в жидкости, которое возможно измерить, используя манометр, двигающийся вместе с жидкостью. В практике давление в различных сечениях трубы определяют при помощи манометрических трубок, размещаемых через боковые стенки в поток жидкости таким образом, чтобы нижние концы трубок были параллельны скоростям частиц жидкости (рис. 1 . 22 . 2 ). Из уравнения Бернулли следует:

Давление в жидкости, проходящей по горизонтальной трубе переменного сечения, больше в тех сечениях потока, в которых скорость ее движения меньше, и наоборот, давление меньше в тех сечениях, в коих скорость больше.

Уравнение бернулли в дифференциальной форме аэродинамика

Рис. 1 . 22 . 2 . Использование манометров для определения давления в потоке.

В случае, когда сечение потока жидкости достаточно велико, уравнение Бернулли необходимо применять к линиям тока, т. е. линиям, вдоль которых происходит перемещение частиц жидкости при стационарном течении.

Мы имеем широкий сосуд с отверстием в боковой стенке, в котором течет идеальная несжимаемая жидкость. При движении потока из отверстия линии тока начинаются вблизи свободной поверхности жидкости и проходят через отверстие (рис. 1 . 22 . 3 ).

Уравнение бернулли в дифференциальной форме аэродинамика

Рис. 1 . 22 . 3 . Истечение жидкости из широкого сосуда.

Так как скорость жидкости вблизи поверхности в широком сосуде является пренебрежимо малой, уравнение Бернулли примет вид: p v 2 2 + p = c o n s t ,

где p 0 – атмосферное давление, h – перепад высоты вдоль линии тока. Тогда: v = 2 g h .

v = 2 g h — это формула, выражающая скорость истечения потока и называемая формулой Торричелли. Скорость истечения идеальной жидкости из отверстия в сосуде такая же, как и при свободном падении тела с высоты h без начальной скорости.

Видео:Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Элементы аэродинамики

Отличительной чертой газов от жидкостей является возможность значимо изменять свой объем. Расчеты позволяют утверждать, что сжимаемостью газов можно пренебречь, когда наибольшие скорости в потоке являются малыми по сравнению со скоростью звука в этом газе. Следовательно, уравнение Бернулли возможно использовать для достаточно широкого класса задач аэродинамики.

В числе подобных задач — исследование сил, осуществляющих воздействие на крыло самолета. Строго теоретически решить эту задачу достаточно затруднительно, и обычно для изучения сил используют экспериментальные методы. Уравнение Бернулли дает возможность только качественно объяснить появление подъемной силы крыла.

Рис. 1 . 22 . 4 демонстрирует линии тока воздуха, обтекающего крыло самолета. Особый профиль крыла и наличие угла атаки (угла наклона крыла по отношению к набегающему потоку воздуха) определяют тот факт, что скорость течения воздуха над крылом становится больше, чем под крылом. В связи с этим на рис. 1 . 22 . 4 линии тока над крылом расположены ближе друг к другу, чем под крылом. Выводом из принципа Бернулли является то, что давление в нижней части крыла будет больше, чем в верхней, и в итоге мы имеем силу F → , осуществляющую действие на крыло.

F y → – вертикальная составляющая силы F → , называемая подъемной силой.

F x → — горизонтальная составляющая силы F → , называемая силой сопротивления среды.

Подъемная сила дает возможность компенсации силы тяжести, осуществляющей действие на самолет, и этим она и определяет саму возможность движения тяжелых летательных аппаратов в воздушной среде.

Уравнение бернулли в дифференциальной форме аэродинамика

Рис. 1 . 22 . 4 . Линии тока при обтекании крыла самолета и возникновение подъемной силы. α – угол атаки.

Теорию подъемной силы крыла самолета сформулировал Н. Е. Жуковский в 1904 г., и она получила название теоремы Жуковского:

Подъёмная сила сегмента крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъёмной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции.

Жуковский продемонстрировал, что при обтекании крыла значимое влияние оказывают силы вязкого трения в поверхностном слое. Итогом их воздействия является возникновение кругового движения или циркуляции воздуха вокруг крыла (обозначено стрелками зеленого цвета на рис. 1 . 22 . 4 ). В верхней части крыла скорость циркулирующего воздуха соединяется со скоростью набегающего потока, в нижней же части эти скорости противоположно направлены. Подобный эффект и служит причиной появления разности давлений и образования подъемной силы.

Циркуляция воздуха, определяемая силами вязкого трения, появляется и вокруг тела, которое вращается. Практически значимым, к примеру, является вращение цилиндра.

При вращении цилиндра само тело влечет за собой примыкающие слои воздуха, создавая циркуляцию воздушного потока. Когда цилиндр установлен в набегающем потоке, возникает сила бокового давления, подобная подъемной силе крыла самолета. Такое явление носит название эффекта Магнуса.

На рис. 1 . 22 . 5 проиллюстрировано обтекание цилиндра, осуществляющего вращение, набегающим потоком. Примером эффекта Магнуса служит полет закрученного мяча при игре в теннис или футбол.

Уравнение бернулли в дифференциальной форме аэродинамика

Рис. 1 . 22 . 5 . Обтекание вращающегося цилиндра набегающим потоком воздуха.

Таким образом, на множество явлений аэродинамики оказывают значимое влияние силы вязкого трения. Они дают толчок к возникновению циркулирующих потоков воздуха вокруг крыла самолета или вокруг вращающегося тела, к появлению силы сопротивления среды и т. д. Уравнение Бернулли не берет в расчет силы трения. Вывод Бернулли опирается на закон сохранения механической энергии при течении жидкости или газа. Поэтому при помощи принципа Бернулли невозможно исчерпывающе объяснить явления, в которых имеется проявление сил трения. В подобных случаях возможно опираться лишь на качественные соображения – чем больше скорость, тем меньше давление в потоке газа.

Особо заметное проявление имеют силы вязкого трения в потоке жидкостей. Некоторые жидкости обладают вязкостью такой значимой величины, что использование уравнения Бернулли может привести к качественно неверным результатам.

К примеру, в случае истечения жидкости высокой вязкости через отверстие в стенке сосуда ее скорость может быть в десятки раз меньше той, что будет рассчитана по формуле Торричелли. Когда сферическое тело движется в идеальной жидкости, оно не должно встречать лобового сопротивления. Когда такое тело перемещается в вязкой жидкости, появляется сила сопротивления, и ее модуль будет пропорционален скорости υ и радиусу сферы r (закон Стокса) F с о п р

Коэффициент пропорциональности в этом выражении имеет зависимость от свойств жидкости. Т.е., если шарик значимого веса бросить в высокий сосуд, содержащий вязкую жидкость (к примеру, глицерин), то спустя некоторое время скорость шарика установится на уровне определенного значения, не изменяющегося при последующем движении шарика. Когда движение будет происходить на некой установившейся скорости, силы, влияющие на шарик (сила тяжести m g → , выталкивающая сила F А → и сила сопротивления среды F с о п р ), оказываются скомпенсированными, и их равнодействующая будет равна нулю.

Видео:Закон БернуллиСкачать

Закон Бернулли

Уравнение Бернулли — вывод формулы, физический смысл, примеры использования

Уравнение бернулли в дифференциальной форме аэродинамика

Видео:Уравнение БернуллиСкачать

Уравнение Бернулли

Исследования учёного

Даниил Бернулли родился в Голландии в 1700 году. В 1725 году он начал работать на кафедре физиологии, где увлёкся основами теоретической физики. Через 25 лет он возглавил кафедру экспериментальной физики, которой и руководил до конца своих дней. Основным его трудом считается создание теории гидродинамической зависимости, известной как Закон Бернулли. Открытие учёного предвосхитило зарождение молекулярно-кинетического учения поведения газов.

Уравнение бернулли в дифференциальной форме аэродинамика

Причиной открытия принципа стало изучение действия закона сохранения энергии в различных ситуациях. Бернулли установил, что давление жидкости в замкнутом пространстве зависит от сечения объекта, в котором она находится. Чем меньше сечение трубы, тем ниже будет созданное давление в пропускаемом через неё жидком веществе.

Этот факт был доказан экспериментально и описан математически.

Правило в математической формулировке имеет вид (pv 2 / 2) + p * g * h + ρ = const, где:

  • p — количество жидкости на единицу объёма;
  • v — скорость движения потока;
  • h — уровень, на который поднят элемент жидкости;
  • ρ — сила, действующая на единицу площади;
  • g — ускорение, придаваемое жидкости под действием притяжения Земли.

Уравнение бернулли в дифференциальной форме аэродинамика

Чтобы понять физический смысл уравнения Бернулли, нужно рассмотреть трубу переменного сечения, в которой существует точка А и Б. Первая располагается в широкой части, а вторая — в узкой. В соответствии с уравнением непрерывности скорость V1 в части трубы, имеющей большее сечение, будет меньше, чем скорость жидкости V2 в узком сечении. Если в жидкость поместить прибор для измерения давления, он покажет какое-то значение P1 в точке A и P2 в точке Б. При этом там, где скорость движения жидкости медленнее, давление будет больше.

Объясняется это следующим образом: если V1 больше V2, значит, при движении происходит изменение скорости течения. Представив, что в жидкости находится точка, можно утверждать о её движении с ускорением. Это означает, что на неё действуют силы.

Одна из них совпадает с направлением течения, тем самым ускоряя движение. Обусловлена эта сила разностью давления.

Так как движение происходит от точки А к Б, то и давление возле А будет больше, чем около Б. Эта разность давлений и приводит к ускорению.

Видео:Основы гидродинамики и аэродинамики | уравнение БернуллиСкачать

Основы гидродинамики и аэродинамики | уравнение Бернулли

Условия действия

Закон применим для условия, при котором соблюдается неразрывность струи воздуха или жидкости. В тех участках потока, где скорость течения больше, давление будет меньше и наоборот. Это утверждение и называется теоремой Бернулли. По сути, закон позволяет установить связь между давлением, скоростью, высотой.

Уравнение бернулли в дифференциальной форме аэродинамика

Пусть имеется труба переменного сечения с изменяющейся высотой. Внизу она широкая, а затем сужается. По ней течёт жидкость. Площадь сечения можно обозначить как S1 и S2, а давление участков и скорость движения на них P1, P2, V1, V2. Высота внизу будет равняться S1, а вверху S2.

Выделив участок в трубе с жидкостью, можно сказать, что она движется слева направо и через некоторое время полностью сдвинется в область S2. Изменение положения слева будет равно расстоянию дельта L1, а справа — дельта L2.

Течение является:

  • ламинарным — находящаяся в трубке жидкость перемешивается слоями без хаотических изменений давления и скорости, турбулентность отсутствует;
  • стационарным — распределение скоростей не изменяется с течением времени;
  • скоростным — в движении принимает участие такой параметр, как ускорение;
  • идеальным с несжимаемой жидкостью.

Последнее обозначает, что нет вязкости. Поэтому на жидкость действует только сила упругости и тяжести, а силы трения нет. Система не является замкнутой, а значит закон сохранения энергии применительно к рассматриваемому участку использовать нельзя. Зато вполне можно применить теорему о кинетической энергии.

Уравнение бернулли в дифференциальной форме аэродинамика

Для газов уравнение можно использовать лишь в том случае, если их плотность изменяется незначительно. Но касаемо аэродинамики учитывается и то, что изменение давления воздуха гораздо меньше атмосферного. Поэтому уравнение можно применять в аэродинамических расчётах.

Согласно ему, сумма действующих всех сил на тело (рассматриваемый кусок жидкости) равняется изменению кинетической энергии объекта: ΣAi = ΔEk. На нижний участок действует сила давления, выполняющая положительную работу, а на верхний — отрицательную. Кроме этого, действует и сила тяжести. Так как жидкость поднимается, она имеет тоже отрицательный знак. Сила бокового давления перпендикулярна любой точке в системе, поэтому никакого влияния она не оказывает.

Видео:Закон БернуллиСкачать

Закон Бернулли

Количественная сторона

Исходя из сил, действующих на тело, изменение кинетической энергии можно описать выражением: ΔEk = Ap1 +Ap2 +Ag. Чтобы найти работу, необходимо силу умножить на пройденное расстояние. Поэтому работа силы давления равна произведению самой силы F на модуль перемещения ΔL и косинусу угла между ними: Ap1 = F1* ΔL *1.

Чтобы найти силу, нужно давление умножить на площадь. Значит: Ap1 = p 1 * S1 * ΔL1 = p1V1. Таким же образом находится работа для второго состояния: Ap2 = F1* ΔL2 *(-1) = — p2 * S2 * ΔL2 = -p2 * V2. Жидкость несжимаемая, следовательно: V1=V2=V.

Уравнение бернулли в дифференциальной форме аэродинамика

Работу силы тяжести можно вычислить исходя из того, что рассматриваемый кусок жидкости является относительным, то есть он, хотя и не статический, в любом месте будет подвергаться воздействию одинаковой силы тяжести. Верным будет выражение: Ag = — ΔEp = — (m2 * g * h2 — m1 * g * h1) = m1 * g * h1 — m2 * g * h2. Так как жидкость несжимаемая, её плотность не изменится. Отсюда можно утверждать: Ag = ρ * V * g * h1 — ρ * V * g * h2.

Зная количественные показатели всех трёх работ, можно найти изменение кинетической энергии. Из физики известно, что оно равно разнице конечной и начальной энергии. Течение стационарное, значит, скорость с течением времени не изменится. Следовательно, кинетическая энергия будет определяться разницей появившейся энергии в верхней части и ушедшей из нижней области: ΔEk = (m2 * v2 2 )/2 — (m1 * v1 2 ) / 2.

Воспользовавшись тем, что масса равняется произведению плотности на объём, формулу можно привести к виду: ΔEk = (ρ * V * v2 2 )/2 — (ρ * V * v1 2 ) / 2. Теперь найденные выражения для работ нужно подставить в теорему о кинетической энергии. Получится следующее равенство: p1V — p2V + ρ * V * g * h1 — ρ * V * g * h2 = (ρ * V * v2 2 ) / 2 — (ρ * V * v1 2 ) / 2. Разделив левую и правую часть на объём, выражение можно упростить до вида: p1 — p2 + ρ * g * h1 — ρ * g * h2 = (ρ * v2 2 )/2 — (ρ * v1 2 ) / 2 .

То место, где давление p1, некая точка внутри трубки, пусть будет обозначено цифрой один, а там, где p2, — цифрой два. Всё что относится к единице можно записать в левой части, а к двойке — в правой: ρ1 * g * h1 + (ρ * v1 2 ) / 2 = ρ * g * h2 + (ρ * v2 2 ) / 2. Полученная формула показывает, что при переходе в пределе одной линии скорость, давление и высота изменяются. Поэтому в любой точке будет справедливым выражение: ρ1+ ρ * g * h + (ρ * v1) / 2 = const. Это и есть количественное описание уравнения Бернулли для идеальной жидкости.

Видео:Уравнение Бернулли Метод БернуллиСкачать

Уравнение Бернулли  Метод Бернулли

Применение в гидравлике

Наиболее типичным примером использования уравнения является решение заданий по нахождению скорости вытекания жидкости из отверстия в широком сосуде. Такой ёмкостью называют систему, в которой диаметр сосуда значительно больше размера отверстия. Необходимо найти скорость вытекающей жидкости U1. Известно, что высота столба жидкости, на который действует сила тяжести g, равна h.

Уравнение бернулли в дифференциальной форме аэродинамика

Пусть в жидкости, находящейся сверху, имеется точка один. Через некоторое время она окажется внизу в положении два. На верх жидкости давит атмосферное давление, поэтому p1=pатм. Высота в точке один равна h. Скорость U1 считают равной нулю. Давление p2 в точке два будет также равно атмосферному. Так как жидкость опустится на дно, то высота h2 станет нулевой.

Все эти величины следует подставить в уравнение Бернулли. Получится выражение: pатм + ρ * g * h + 0 = pатм + (ρ * U 2 ) / 2 + 0. Атмосферное давление взаимно уничтожается: ρ * g * h = (ρ * U 2 ) / 2. В левой и правой части стоит плотность, на которую можно сократить. Отсюда получается, что вид жидкости значения не имеет. Это может быть: вода, ртуть, расплавленный металл. Эффект от этого не поменяется. Из формулы можно выразить искомое U2. Оно будет равно: U2 = (2 * g * h) ½ .

Интересным фактом является то, что полученный ответ при решении задачи называется формулой Торричелли. Она показывает, что скорость, с которой вытекает жидкость из широкого сосуда, равна скорости тела при свободном падении с той же высоты.

Используя уравнение, можно легко рассчитать давление жидкости на дно и стенки сосуда. В этом случае закон Бернулли является обобщением для формулы гидростатического давления. Пусть имеется сосуд с жидкостью высотой h. Точка, находящаяся наверху, характеризуется давлением p1 = pатм., высотой h1 равной h и скоростью U1. Для точки на дне параметры будут следующие: p2 = p, h2 = 0, U2 = 0. Скорости принимаются равными нулевому значению, так как рассматриваемая жидкость находится в состоянии покоя.

Данные следует подставить в уравнение. В итоге получится равенство: pатм + ρ * g * h + 0 = p + 0 + 0. Из него несложно найти неизвестное: p = pатм + ρ * g * h. Полученный ответ является формулой гидростатического давления и подтверждает закон Паскаля.

Аналогично уравнение Бернулли для потока реальной жидкости используется при расчёте расхода в карбюраторе, пульверизаторе, учёте статического и динамического давления.

Видео:Основы гидродинамики и аэродинамики | условие неразрывностиСкачать

Основы гидродинамики и аэродинамики | условие неразрывности

Подъёмная сила

Самолёт летает благодаря тому, что набегающий на крыло напор воздуха создаёт подъёмную силу. Её можно рассчитать и оценить с помощью уравнения. Геометрически крыло можно представить в виде плоскости с углом a (угол атаки). На него действует поток воздуха со скоростью U. Частица воздуха ударяет в твёрдую поверхность и отражается от неё. Угол отражения равен углу атаки, а её скорость равняется U’. Нужно рассчитать подъёмную силу. Для этого необходимо выполнить три шага:

Уравнение бернулли в дифференциальной форме аэродинамика

  • рассмотреть изменение скорости воздуха;
  • узнать импульс частиц;
  • используя закон Ньютона, определить силу.

В результате получится, что на крыло действует сила, состоящая из двух компонентов: подъёмной силы Fy и аэродинамического сопротивления Fx. Fy = Cy * p * U 2 * S, а Fx = Cx * p * U 2 * S. В формулах С является коэффициентом, а S — площадью крыла.

Для расчёта используется уравнение Бернулли. Выглядеть оно будет следующим образом: Pп. к + (ρ * Uп. к) * 2 / 2 + ρ * g * hп. к = Pн. к + (ρ * Uн. к) * 2 / 2 + ρ * g * hн. к, где: п. к — под крылом, а н. к — над крылом. Это уравнение можно упростить, приняв, что давления над и под крылом примерно одинаковые, поэтому плотность будет также одинаковая. Кроме того, высота крыла довольно маленькая. Исходя из этого, формулу можно упростить, и она примет вид: pп. к-pн.к = (ρ * (Uн.к + Uп. к) * (Uн.к — Uп. к)) / 2 = 2 * U1 * U2. Теперь можно найти подъёмную силу. Для этого разность давлений нужно умножить на площадь крыла: Fy = (pп.к-pн. к) * S.

Таким образом, используя метод, можно рассчитать подъёмную силу, обусловленную эффектом Бернулли. Например, пусть дано, что площадь крыла равна 50 м². Скорость потока воздуха над крылом и под ним соответственно равны: U1 = 320 м/с, U2 = 290 м/с. Найти грузоподъёмность. Для решения задания нужно знать дифференциальную плотность воздуха. Это справочная величина, равная 1,29 кг/м3.

Используя уравнение Бернулли, можно записать: pп. к-pн.к = ρ * (U2н.к — U2п. к). Подъёмная сила равна площади крыла, умноженной на разность давления. Подставив одно выражение в другое, получим рабочую формулу: Fy = ρ * (U2н.к — U2п. к) * S / 2. После выполнения расчёта получится ответ 590 кН. То есть грузоподъёмность самолёта составит порядка 59 тонн.

Реальные вычисления для таких задач довольно сложные, поэтому часто используют онлайн-калькуляторы.

🎬 Видео

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Уравнения Бернулли. Дифференциальны уравненияСкачать

Уравнения Бернулли. Дифференциальны уравнения

Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика

Дифференциальные уравнения. Уравнение БернуллиСкачать

Дифференциальные уравнения. Уравнение Бернулли

Уравнение БернуллиСкачать

Уравнение Бернулли

Как летает самолет? Закон Бернулли - Основы авиации #2Скачать

Как летает самолет? Закон Бернулли - Основы авиации #2

Уравнения БернуллиСкачать

Уравнения Бернулли

Уравнение БернуллиСкачать

Уравнение Бернулли
Поделиться или сохранить к себе: