Видео:Уравнение Бернулли Метод БернуллиСкачать

Решение дифференциального уравнения Бернулли приведением к линейному уравнению
Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q – функции от x .
Разделим его на y n . При y ≠ 0 или n 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это – линейное, относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.
Видео:Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравненийСкачать

Решение методом Бернулли
Рассматриваемое уравнение (1) также можно решить методом Бернулли. Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v – функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1):
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) – это уравнение с разделяющимися переменными. Решаем его и находим частное решение v = v ( x ) . Подставляем частное решение в (3). Поскольку оно удовлетворяет уравнению (4), то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v – уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .
Видео:Метод Бернулли. Метод ЛагранжаСкачать

Примеры решений дифференциального уравнения Бернулли
Пример 1
Решить уравнение
(П1.1)
Это дифференциальное уравнение Бернулли. Решаем его методом Бернулли. Ищем решение в виде произведения двух функций: . Тогда
. Подставляем в (П1.1):
;
(П1.2) .
Одну из этих функций мы можем выбрать произвольным образом. Выберем v так, чтобы выражение в круглых скобках равнялось нулю:
(П1.3) .
Тогда подставляя (П1.3) в (П1.2), мы получим дифференциальное уравнение с разделяющимися переменными:
(П1.4) .
Сначала мы определим функцию v . Нам нужно найти любое, отличное от нуля, решение уравнения (П1.3). Решаем его. Для этого разделяем переменные и интегрируем.
;
;
;
;
.
Отсюда , или . Возьмем решение с и знаком ′плюс′. Тогда , или .
Итак, мы нашли функции u и v . Находим искомую функцию y :
.
Заменим постоянную интегрирования: . Тогда общее решение исходного уравнения (П1.1) примет вид:
.
Когда мы делили на u , то предполагали, что . Теперь рассмотрим случай . Тогда . Нетрудно видеть, что постоянная функция также является решением исходного уравнения (П1.1) ⇑.
Общее решение уравнения: .
Уравнение также имеет решение .
Пример 2
На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y – зависимой (то есть если y – это функция от x ), то это так. Но если считать y независимой переменной, а x – зависимой, то легко увидеть, что это – уравнение Бернулли.
Итак, считаем что x является функцией от y . Подставим в исходное уравнение и умножим на :
;
;
(П2.1) .
Это – уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1), только обозначением переменных ( x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v – функции от y . Дифференцируем по y :
.
Подставим в (П2.1):
;
(П2.2) .
Ищем любую, отличную от нуля функцию v ( y ) , удовлетворяющую уравнению:
(П2.3) .
Разделяем переменные и интегрируем:
;
;
.
Поскольку нам нужно любое решение уравнения (П2.3), то положим C = 0 :
; ; .
Возьмем решение со знаком ′плюс′:
.
Подставим в (П2.2) учитывая, что выражение в скобках равно нулю (ввиду (П2.3)):
;
;
.
Разделяем переменные и интегрируем. При u ≠ 0 имеем:
;
(П2.4) ;
.
Во втором интеграле делаем подстановку :
;
.
Интегрируем по частям:
;
.
Подставляем в (П2.4):
.
Возвращаемся к переменной x :
;
;
.
Автор: Олег Одинцов . Опубликовано: 07-08-2012 Изменено: 29-10-2020
Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Дифференциальные уравнения Бернулли в примерах решений
Дифференциальным уравнением Бернулли называется уравнение вида

Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.
В случае, если m = 0 , уравнение является линейным, а в случае, если m = 1 , уравнение является уравнением с разделяющимися переменными.
Дифференциальное уравнение Бернулли можно решить двумя методами.
- Переходом с помощью подстановки к линейному уравнению.
- Методом Бернулли.
Переход от уравнения Бернулли к линейному уравнению.
Уравнение делим на 


Обозначим 



которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.
Решение методом Бернулли.
Решение следует искать в виде произведения двух функций y = u ⋅ v . Подставив его в дифференциальное уравнение, получим уравнение

Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:

Приравняв выражение в скобках нулю, то есть

получим дифференциальное уравнение с разделяющимися переменными для определения функции v .
Функцию u следует находить из дифференциального уравнения

которое также является уравнение с разделяющимися переменными.
Пример 1. Решить дифференциальное уравнение Бернулли

Решение. Решим дифференциальное уравнение двумя методами.
1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :

Введём обозначение 



Решим его методом Бернулли. В последнее уравнение подставим z = u ⋅ v , z‘ = u‘v + uv‘ :


Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:
Полученную функцию v подставим в уравнение:
2. Методом Бернулли. Ищем решение в виде произведения двух функций y = u ⋅ v . Подставив его и y‘ = u‘v + uv‘ в данное дифференциальное уравнение, получим
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
И, наконец, найдём решение данного дифференциального уравнения:
Пример 2. Решить дифференциальное уравнение Бернулли

Решение. Это уравнение, в котором m = −1 . Применив подстановку y = u ⋅ v , получим
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
Таким образом, получаем решение данного дифференциального уравнения:

Пример 3. Решить дифференциальное уравнение Бернулли

Решение. Это уравнение можно решить, используя подстановку y = u ⋅ v . Получаем
Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:
Подставляем v в данное уравнение и решаем полученное уравнение:
и проинтегрируем обе части уравнения:
Далее используем подстановку


Таким образом, получаем функцию u :

и решение данного дифференциального уравнения:
Пример 4. Решить задачу Коши для дифференциального уравнения
при условии 
Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую — нелинейные:

Это уравнение Бернулли, которое можно решить, используя подстановку y = u ⋅ v , y‘ = u‘v + uv‘ :
Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:
Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:
Вычислим каждый интеграл отдельно. Первый:

Второй интеграл интегрируем по частям. Введём обозначения:
Приравниваем друг другу найденные значения интегралов и находим функцию u :
Таким образом, общее решение данного дифференциального уравнения:

Используем начальное условие, чтобы определить значение константы:
Ищем частное решение, удовлетворяющее начальному условию:
В результате получаем следующее частное решение данного дифференциального уравнения:

И напоследок — пример с альтернативным обозначением производных — через дробь.
Пример 5. Решить дифференциальное уравнение Бернулли

Решение. Решим это уравнение первым из представленных в теоретической части методом — переходом к линейному уравнению. Разделив данное уравнение почленно на y³ , получим

Введём новую функцию 

Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:

Найдём его общий интеграл:


Подставляя эти значение в полученное линейное уравнение, получаем

Приравниваем нулю выражение в скобках:
Для определения функции u получаем уравнение

Интегрируем по частям:
Таким образом, общий интеграл данного уравнения

Видео:9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать

Уравнения Бернулли
Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений Бернулли.
- Решение онлайн
- Видеоинструкция
Пример 1 . Найти общее решение уравнения y’ + 2xy = 2xy 3 . Это уравнение Бернулли при n=3. Разделив обе части уравнения на y 3 получаем 





Пример 2 . y’+y+y 2 =0
y’+y = -y 2
Разделим на y 2
y’/y 2 + 1/y = -1
Делаем замену:
z=1/y n-1 , т.е. z = 1/y 2-1 = 1/y
z = 1/y
z’= -y’/y 2
Получаем: -z’ + z = -1 или z’ — z = 1
Далее надо найти z и выразить через него y = 1/z .
Пример 3 . xy’+2y+x 5 y 3 e x =0
Решение.
а) Решение через уравнение Бернулли.
Представим в виде: xy’+2y=-x 5 y 3 e x . Это уравнение Бернулли при n=3 . Разделив обе части уравнения на y 3 получаем: xy’/y 3 +2/y 2 =-x 5 e x . Делаем замену: z=1/y 2 . Тогда z’=-2/y 3 и поэтому уравнение переписывается в виде: -xz’/2+2z=-x 5 e x . Это неоднородное уравнение. Рассмотрим соответствующее однородное уравнение: -xz’/2+2z=0
1. Решая его, получаем: z’=4z/x
Интегрируя, получаем:
ln(z) = 4ln(z)
z=x 4 . Ищем теперь решение исходного уравнения в виде: y(x) = C(x)x 4 , y'(x) = C(x)’x 4 + C(x)(x 4 )’
-x/2(4C(x) x 3 +C(x)’ x 4 )+2y=-x 5 e x
-C(x)’ x 5 /2 = -x 5 e x или C(x)’ = 2e x . Интегрируя, получаем: C(x) = ∫2e x dx = 2e x +C
Из условия y(x)=C(x)y, получаем: y(x) = C(x)y = x 4 (C+2e x ) или y = Cx 4 +2x 4 e x . Поскольку z=1/y 2 , то получим: 1/y 2 = Cx 4 +2x 4 e x
б) решение через замену переменных
y=uv
x(u’v + uv’)+2uv+x 5 u 3 v 3 e x =0
v(x u’ + 2u) + xuv’+ x 5 u 3 v 3 e x = 0
a) xu’+2u = 0

b) xuv’+ x 5 u 3 v 3 e x = 0
x x -2 v’+ x 5 x -6 v 3 e x = 0
v’/x+ v 3 e x /x = 0
v’+ v 3 e x = 0

📽️ Видео
10. Уравнения БернуллиСкачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

Метод Бернулли. Метод Лагранжа (вариации произвольной постоянной). Линейное дифуравнение 1 порядкаСкачать

Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Метод БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Метод БернуллиСкачать

Линейные дифференциальные уравнения (Метод Бернулли)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Уравнения Бернулли. Дифференциальны уравненияСкачать

Уравнения БернуллиСкачать

Линейное дифференциальное уравнение. Метод БернуллиСкачать

Линейной ДУ 1 порядка, метод Бернулли и метод вариации постояннойСкачать

Дифференциальные уравнения Бернулли| poporyadku.schoolСкачать






































