Уравнение Бернулли для струйки жидкости формулируется следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.
Уравнение Бернулли выглядит так:
Подробное описание всех входящих в состав уравнения параметров уже описан в этой статье.
Содержание статьи
- Смысл уравнения Бернулли
- Уравнение Бернулли для элементарной струйки реальной жидкости
- Уравнение Бернулли для потока реальной жидкости
- Уравнение бернулли для двух различных сечений потока дает взаимосвязь между давлением
- Основы гидравлики
- Уравнение Бернулли — фундамент гидродинамики
- Геометрическая интерпретация уравнения Бернулли
- Пример решения задачи на определение расхода жидкости
- Тест с ответами по гидравлике и пневматике — часть 02
- 📸 Видео
Видео:Закон БернуллиСкачать
Смысл уравнения Бернулли
По существу вывода уравнение Бернулли для струйки идеальной жидкости представляет собой закон сохранения механической энергии, составленный применительно к единице массового расхода жидкости. Это следует из того, что в процессе вывода значения работы сил, приложенных к выделенному объему струйки и значения кинетической энергии этого объема были поделены на величину ρqΔT.
Отсюда вытекает, что поскольку член υ 2 /2 является мерой кинетической энергии единицы массы движущейся жидкости, то сумма членов gz+p/ρ будет мерилом ее потенциальной энергии.
В отношении величины gz это очевидно, ведь если частица жидкости массы m расположена на высоте z относительно некоторой плоскости и находится под действием сил тяжести, то способность ее совершить работу, т.е. её потенциальная энергия относительно этой плоскости равняется mgz. Но если её поделить на массу частиц m, то эта часть потенциальной энергии даст величину gz.
Для более ясного физического представления о том, что потенциальная энергия измеряется величиной p/ρ рассмотрим такую схему: пусть к трубе, заполненной жидкостью с избыточным давлением p, присоединен пьезометр, снабженный на входе в него краном.
Кран сначала закрыт, т.е. пьезометр свободен от жидкости, а элементарный объем жидкости ΔV массой ρ*ΔV перед краном находится под давлением p.
Если затем открыть кран, то жидкость в пьезометре поднимется на некоторую высоту, равную
Таким образом, единица массы, находящейся под давлением p, как бы несет в себе ещё заряд потенциальной энергии, определяемой величиной p/ρ.
В гидравлике для характеристики удельной энергии обычно используется понятие напор, под которым понимают энергию жидкости, отнесенную к единице силы тяжести, а не её массы. В соответствии с этим уравнение Бернулли записанное в начале этой статьи примет вид
Такое уравнение Бернулли для элементарной струйки идеальной жидкости в другой форме, весьма удобно для гидравлических расчетов и может быть сформулировано следующим образом.
Для элементарной струйки идеальной жидкости полный напор, т.е. сумма геометрического, пьезометрического и скоростного напоров, есть величина постоянная во всех её сечениях.
Отсюда следует, что между напором и удельной энергией существует очень простая зависимость
где э – удельная энергия
Уравнение Бернулли для элементарной струйки реальной жидкости
Если вместо идеальной жидкости рассматривать жидкость реальную, то уравнение Бернулли для реальной жидкости должно принять несколько другой вид.
При движении идеальной жидкости её полная удельная энергия или напор сохраняет постоянное значение по длине струйки, а при движении реальной жидкости эта энергия будет убывать по направлению движения. Причиной этого являются затраты энергии на преодоление сопротивлений движению, обусловленные внутренним трением в вязкой жидкости.
Если же мы рассмотрим два сечения для струйки идеальной жидкости: 1-1 в начале и 2-2 в конце струйки, то полная удельная энергия будет
Полная удельная энергия для сечения 1-1 всегда будет больше, чем полная удельная энергия для сечения 2-2 на некоторую величину потерь, и уравнение Бернулли в этом случае получается
Величина Э1-2 представляет собой меру энергии, потерянную единицей массы жидкости на преодоление сопротивлений при её движениями между указанными сечениями.
Соответствующий этой потере удельной энергии напор называют потерей напора между сечениями 1-1 и 2-2 и обозначают h1-2 . Поэтому уравнение Бернулли для элементарной струйки реальной жидкости можно представить в виде
Уравнение Бернулли для потока реальной жидкости
Уравнение Бернулли для струйки реальной жидкости это еще только половина дела, ведь в при решении различных практических вопросов о движении жидкостей приходится иметь дело с потоками конечных размеров. Уравнение Бернулли в этом случае может быть получено, исходя из рассмотрения потока как совокупности множества элементарных струек.
Учитывая, что все струйки движутся с одной и той же средней скоростью форма записи уравнения Бернулли для потока идеальной жидкости становится идентичной его записи для элементарной струйки.
В таком виде уравнение Бернулли обычно и применяется при решении практических задач для потоков однородной несжимаемой жидкости при установившемся движении, происходящем под действием одной силы тяжести.
Такое уравнение составляется для различных живых сечений потока, вблизи которых движение жидкости должно удовлетворять условиям медленно изменяющегося движения, хотя на пути между этими сечениями движение может и не удовлетворять указанным условиям.
Слагаемое h1-2 в этом уравнении показывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений:
— hлп — линейные потери — сопротивления, проявляющиеся по всей длине потока, обусловленные силами трения частиц жидкости друг о друга и о стенки, ограничивающие поток.
— hмп — местные потери – местные сопротивления, обусловленные различного рода препятствиями, устанавливаемыми в потоке (задвижка, кран, колено), приводящими к изменениям величины или направления скорости течения жидкости
Поэтому полная потеря напора между двумя сечениями потока при наличии сопротивлений обоих видов будет
Видео по теме
Уравнение Бернулли подходит и для газов. Явление уменьшения давления при повышении скорости потока является основой работы различных приборов для измерения расхода. Закон Бернулли справедлив и для жидкостей вязкость которых равна нулю. При описании течения таких жидкостей используют уравнение Бернулли с добавлением слагаемых учитывающих потери на местные сопротивления.
Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать
Уравнение бернулли для двух различных сечений потока дает взаимосвязь между давлением
Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.
Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.
Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы — круг (рис.3.1, б); живое сечение клапана — кольцо с изменяющимся внутренним диаметром (рис.3.1, б).
Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).
Для круглой трубы
если угол в радианах, или
Расход потока Q — объем жидкости V, протекающей за единицу времени t через живое сечение ω.
Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω
Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.
Гидравлический радиус потока R — отношение живого сечения к смоченному периметру
Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени
Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным
Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.
Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.
Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное — течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.
Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда
Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:
Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.
Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).
Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.
Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.
Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.
Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).
Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.
Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.
Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:
Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:
и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.
С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:
z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
— удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
— удельные кинетические энергии в тех же сечениях.
Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.
Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; — пьезометрические высоты; — скоростные высоты в указанных сечениях.
В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.
Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения
Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).
Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.
Уравнение Бернулли для реальной жидкости будет иметь вид:
Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.
Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).
Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)
Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим
где Н — столб жидкости в трубке Пито.
Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.
Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений I-I и II-II:
Выражение, стоящее перед , является постоянной величиной, носящей название постоянной водомера Вентури.
Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.
Видео:Закон БернуллиСкачать
Основы гидравлики
Видео:Эффект Вентури и трубка Пито (видео 16) | Жидкости | ФизикаСкачать
Уравнение Бернулли — фундамент гидродинамики
Бернулли — вне всякого сомнения — имя, знакомое и специалистам, и обывателям, которые хоть немного интересуются науками. Этот человек оставил ослепительный след в истории познавания человечеством окружающего мира, как физик, механик, гидравлик и просто общепризнанный гений, Даниил Бернулли навсегда останется в памяти благодарных потомков за свои идеи и выводы, которые долгое время существования человечества были покрыты мраком неизведанного.
Открытия и законы, которыми Бернулли осветил путь к познанию истины, являются фундаментальными, и придали ощутимый импульс развитию многих естественных наук. К таковым относится и уравнение Бернулли в Гидравлике, которое он вывел почти три века назад. Данное уравнение является основополагающим законом этой сложной науки, объясняющим многие явления, описанные даже древними учеными, например, великим Архимедом.
Попробуем уяснить несложную суть закона Бернулли (чаще его называют уравнением Бернулли), описывающего поведение жидкости в той или иной ситуации.
Выделим в стационарно текущей идеальной жидкости трубку тока, которая ограничена сечениями S1 и S2 , (рис. 1) .
(Понятие идеальной жидкости абстрактно, как и понятие всего идеального. Идеальной считается жидкость, в которой нет сил внутреннего трения, т. е. трения между отдельными слоями и частицами подвижной жидкости).
Пусть в месте сечения S1 скорость течения ν1 , давление p1 и высота, на которой это сечение расположено, h1 . Аналогично, в месте сечения S2 скорость течения ν2 , давление p2 и высота сечения h2 .
За бесконечно малый отрезок времени Δt жидкость переместится от сечения S1 к сечению S1‘ , от S2 к S2‘ .
По закону сохранения энергии, изменение полной энергии E2 — E1 идеальной несжимаемой жидкости равно работе А внешних сил по перемещению массы m жидкости:
где E1 и E2 — полные энергии жидкости массой m в местах сечений S1 и S2 соответственно.
С другой стороны, А — это работа, которая совершается при перемещении всей жидкости, расположенной между сечениями S1 и S2 , за рассматриваемый малый отрезок времени Δt .
Чтобы перенести массу m от S1 до S1‘ жидкость должна переместиться на расстояние L1 = ν1Δt и от S2 до S2‘ — на расстояние L2 = ν2Δt . Отметим, что L1 и L2 настолько малы, что всем точкам объемов, закрашенных на рис. 1 , приписывают постоянные значения скорости ν , давления р и высоты h .
Следовательно,
где F1 = p1S1 и F2 = — p2S2 (сила отрицательна, так как направлена в сторону, противоположную течению жидкости; см. рис. 1).
Полные энергии E1 и E2 будут складываться из кинетической и потенциальной энергий массы m жидкости:
Подставляя (3) и (4) в (1) и приравнивая (1) и (2) , получим
Согласно уравнению неразрывности для несжимаемой жидкости, объем, занимаемый жидкостью, всегда остается постоянным, т. е.
Разделив выражение (5) на ΔV , получим
где ρ — плотность жидкости.
После некоторых преобразований эту формулу можно представить в другом виде:
Поскольку сечения выбирались произвольно, то в общем случае можно записать:
ρv 2 /2 +ρgh +p = const (6) .
Выражение (6) получено швейцарским физиком Д. Бернулли (опубликовано в 1738 г.) и называется уравнением Бернулли.
Даниил Бернулли (Daniel Bernoulli, 1700 — 1782), швейцарский физик, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750).
Уравнение Бернулли по своей сути является интерпретацией закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Уравнение хорошо выполняется и для реальных жидкостей, для которых внутреннее трение не очень велико.
Величина р в формуле (6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела) , величина ρν 2 /2 — динамическим давлением, величина ρgh — гидростатическим давлением.
Статическое давление обусловлено взаимодействием поверхности жидкости с внешней средой и является составляющей внутренней энергии рассматриваемого элементарного объема жидкости (т. е. характеризуется взаимодействием внутренних частиц жидкости, вызванных внешним возмущением — давлением) , а гидростатическое – положением этого объема жидкости в пространстве (зависит от высоты над поверхностью Земли) .
Динамическое давление характеризует кинематическую составляющую энергии этого объема, поскольку зависит от скорости потока, в котором движется рассматриваемый элементарный объем жидкости.
Для горизонтальной трубки тока изменение потенциальной составляющей ρgh будет равно нулю (поскольку h2 – h1 = 0) , и выражение (6) примет упрощенный вид:
ρv 2 /2 + p = const (7) .
Выражение p + ρν 2 /2 называется полным давлением.
Таким образом, содержание уравнения Бернулли для элементарной струйки при установившемся движении можно сформулировать так: удельная механическая энергия при установившемся движении элементарной струйки идеальной жидкости, представляющая собой сумму удельной потенциальной энергии положения и давления и удельной кинетической энергии, есть величина постоянная.
Все члены уравнения Бернулли измеряются в линейных единицах.
В гидравлике широко применяют термин напор, под которым подразумевают механическую энергию жидкости, отнесенную к единице ее веса (удельную энергию потока или неподвижной жидкости) .
Величину v 2 /2g называют скоростным (кинетическим) напором, показывающим, на какую высоту может подняться движущаяся жидкость за счет ее кинетической энергии.
Величину hп = p/ρg называют пьезометрическим напором, показывающим на какую высоту поднимается жидкость в пьезометре под действием оказываемого на нее давления.
Величину z называют геометрическим напором, характеризующим положение центра тяжести соответствующего сечения движущейся струйки над условно выбранной плоскостью сравнения.
Сумму геометрического и пьезометрического напоров называют потенциальным напором, а сумму потенциального и скоростного напора — полным напором.
На основании анализа уравнения Бернулли можно сделать вывод, что при прочих неизменных параметрах потока (жидкости или газа) величина давления в его сечениях обратно пропорциональна скорости, т. е. чем выше давление, тем меньше скорость, и наоборот.
Это явление используется во многих технических конструкциях и устройствах, например, в карбюраторе автомобильного двигателя (диффузор), в форме крыла самолета. Увеличение скорости воздушного потока в диффузоре карбюратора приводит к созданию разрежения, всасывающего бензин из поплавковой камеры, а специальная форма сечения самолетного крыла позволяет создавать на его нижней стороне зону повышенного давления, способствующего появлению подъемной силы.
Геометрическая интерпретация уравнения Бернулли
Поскольку напор измеряется в линейных величинах, можно дать графическую (геометрическую) интерпретацию уравнению Бернулли и его составляющим.
На графике (рис. 2) представлена горизонтальная плоскость сравнения 0-0 , относительно которой геометрический напор будет в каждом сечении равен вертикальной координате z центра тяжести сечения (линия геометрического напора проходит по оси струйки) .
Линия К-К , характеризующая потенциальный напор струйки, получена сложением геометрического и пьезометрического напора в соответствующих сечениях (т. е. разница координат точек линии К-К и соответствующих точек оси струйки характеризует пьезометрический напор в данном сечении) .
Полный напор характеризуется линией MN , которая параллельна плоскости сравнения О-О , свидетельствуя о постоянстве полного напора H’e (удельной механической энергии) идеальной струйки в любом ее сечении.
При движении реальной жидкости, обладающей вязкостью, возникают силы трения между ограничивающими поток поверхностями и между слоями внутри самой жидкости. Для преодоления этих сил трения расходуется энергия, которая превращается в теплоту и рассеивается в дальнейшем движущейся жидкостью. По этой причине графическое изображение уравнения Бернулли для идеальной жидкости будет отличаться от аналогичного графика для реальной жидкости.
Если обозначить hf потери напора (удельной энергии) струйки на участке длиной L , то уравнение Бернулли для реальной жидкости примет вид:
Для реальной жидкости полный напор вдоль струйки не постоянен, а убывает по направлению течения жидкости, т. е. его графическая интерпретация имеет вид не прямой линии, а некоторой кривой МЕ (рис. 3) . Заштрихованная область характеризует потери напора.
Падение напора на единице длины элементарной струйки, измеренной вдоль оси струйки, называют гидравлическим уклоном:
Гидравлический уклон положителен, если напорная линия снижается по течению жидкости, что всегда бывает при установившемся движении.
Для практического применения уравнения Бернулли необходимо распространить его на поток реальной жидкости:
где α1 , α2 — коэффициенты Кориолиса, учитывающие различие скоростей в разных точках сечения потока реальной жидкости.
На практике обычно принимают α1 = α2 = α : для ламинарного режима течения жидкости в круглых трубах α = 2, для турбулентного режима α = 1,04. 1,1.
Из уравнения Бернулли для горизонтальной трубки тока и уравнения неразрывности ( S1v1Δt = S2v2Δt ) видно, что при течении жидкости по горизонтальной трубе, которая имеет различные сечения, скорость жидкости больше в более узких местах (где площадь сечения S меньше) , а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно увидеть, установив вдоль трубы ряд манометров.
Данный опыт показывает, что в манометрической трубке В , которая прикреплена к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С , которые прикреплены к широкой части трубы, что соответствует уравнению Бернулли.
Так как динамическое давление зависит от скорости движения жидкости (газа) , то уравнение Бернулли можно использовать для измерения скорости потока жидкости. Принципиально это свойство жидкости для определения скорости потока реализовано в так называемой трубке Пито – Прандтля (обычно ее называют трубкой Пито ) .
Трубка Пито – Прандтля ( см. рис. 2 ) состоит из двух тонких стеклянных трубок, одна из которых изогнута под прямым углом (Г-образно) , а вторая — прямая.
Одним из свободных концов каждая трубка присоединена к манометру.
Изогнутая трубка имеет открытый свободный конец, направленный против тока и принимающий напор потока жидкости, а вторая погружена в поток перпендикулярно току, и скорость потока на давление внутри трубки не влияет, т. е. внутри этой трубки действует лишь статическая составляющая давления жидкости.
Разница между давлением в первой трубке (полное давление) и второй трубке (статическое давление) , которую показывает манометр, является динамическим давлением, определяемым по формуле:
Определив с помощью трубки Пито — Прандтля динамическое давление в потоке жидкости, можно легко вычислить скорость этого потока:
Уравнение Бернулли также используют для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, с маленьким отверстием в боковой стенке на некоторой глубине ниже уровня жидкости.
Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h1 выхода ее из отверстия) и применим уравнение Бернулли:
Так как давления р1 и р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р1 = р2 , то уравнение будет иметь вид
Из уравнения неразрывности мы знаем, что ν1/ν2 = S2/S1 , где S1 и S2 — площади поперечных сечений сосуда и отверстия.
Если S1 значительно превышает S2 , то слагаемым ν1 2 /2 можно пренебречь и тогда:
Это выражение получило название формулы Торричелли.
Формулу Торричелли можно использовать для подсчета объемного (или массового) расхода жидкости, истекающего из отверстия в сосуде с поддерживаемым постоянно уровнем под действием атмосферного давления.
При этом используется формула Q = vS (для определения массового расхода – m = ρvS ) , по которой определяется расход жидкости за единицу времени.
Если требуется узнать расход жидкости за определенный промежуток времени t , то его определяют, умножив расход за единицу времени на время t .
Следует отметить, что такая методика расчета расхода реальной жидкости через отверстие в стенке сосуда дает некоторые погрешности, обусловленные физическими свойствами реальных жидкостей, поэтому требует применения поправочных коэффициентов (коэффициентов расхода) .
Пример решения задачи на определение расхода жидкости
Определить примерный объемный расход воды, истекающей из отверстия диаметром 10 мм, проделанном в вертикальной стенке широкого сосуда на высоте h = 1 м от верхнего, постоянно поддерживаемого, уровня воды за 10 секунд.
Ускорение свободного падения принять равным g = 10 м/с 2 .
Коэффициент расхода воды через отверстие — µs = 0,62.
По формуле Торричелли определим скорость истечения воды из отверстия:
v = √2gh = √2×10×1 ≈ 4,5 м/с.
Определим расход воды Q за время t = 10 секунд:
Q = µsvSt = 0,62×4,5×3,14×0,012/4 × 10 ≈ 0,0022 м 3 ≈ 2,2 литра.
На практике расход жидкости в трубопроводах измеряют расходомерами, например, расходомером Вентури. Расходомер Вентури (см рис. 2) представляет собой конструкцию из двух конических патрубков, соединенных цилиндрическим патрубком. В сечениях основной трубы и цилиндрического патрубка устанавливают трубки-пьезометры, которые фиксируют уровень жидкости, обусловленный полным давлением в потоке.
При прохождении жидкости через сужающийся конический патрубок часть потенциальной энергии потока преобразуется в кинетическую, и, наоборот, – при прохождении потока по расширяющемуся коническому патрубку, кинетическая энергия уменьшается, а потенциальная растет. Это сказывается на скорости движения жидкости по рассматриваемым участкам. Перепад высоты уровня жидкости в пьезометрах позволяет рассчитать среднюю скорость потока жидкости на рассматриваемых участках и вычислить объемный расход по внутреннему сечению трубы.
В расходомерах учитываются потери напора в самом приборе при помощи коэффициента расхода прибора φ .
Видео:Урок 134. Применения уравнения Бернулли (ч.1)Скачать
Тест с ответами по гидравлике и пневматике — часть 02
Тестирование по гидравлике и пневматике — часть 02. Для студентов заочного и очного отделения. Правильный вариант ответа выделен символом «+»
Вопрос: Вес жидкости, взятой в объеме погруженной части судна называется
[-] погруженным объемом;
[+] водоизмещением;
[-] вытесненным объемом;
[-] водопоглощением.
Вопрос: Водоизмещение — это
[-] объем жидкости, вытесняемый судном при полном погружении;
[-] вес жидкости, взятой в объеме судна;
[-] максимальный объем жидкости, вытесняемый плавающим судном;
[+] вес жидкости, взятой в объеме погруженной части судна.
Вопрос: Если судно возвращается в исходное положение после действия опрокидывающей силы, метацентрическая высота
[+] имеет положительное значение;
[-] имеет отрицательное значение;
[-] равна нулю;
[-] увеличивается в процессе возвращения судна в исходное положение.
Вопрос: Если судно после воздействия опрокидывающей силы продолжает дальнейшее опрокидывание, то метацентрическая высота
[-] имеет положительное значение;
[+] имеет отрицательное значение;
[-] равна нулю;
[-] уменьшается в процессе возвращения судна в исходное положение.
Вопрос: Если судно после воздействия опрокидывающей силы не возвращается в исходное положение и не продолжает опрокидываться, то метацентрическая высота
[-] имеет положительное значение;
[-] имеет отрицательное значение;
[+] равна нулю;
[-] уменьшается в процессе возвращения судна в исходное положение.
Вопрос: По какому критерию определяется способность плавающего тела изменять свое дальнейшее положение после опрокидывающего воздействия
[+] по метацентрической высоте;
[-] по водоизмещению;
[-] по остойчивости;
[-] по оси плавания.
Вопрос: Проведенная через объем жидкости поверхность, во всех точках которой давление одинаково, называется
[-] свободной поверхностью;
[+] поверхностью уровня;
[-] поверхностью покоя;
[-] статической поверхностью.
Вопрос: Относительным покоем жидкости называется
[+] равновесие жидкости при постоянном значении действующих на нее сил тяжести и инерции;
[-] равновесие жидкости при переменном значении действующих на нее сил тяжести и инерции;
[-] равновесие жидкости при неизменной силе тяжести и изменяющейся силе инерции;
[-] равновесие жидкости только при неизменной силе тяжести.
Вопрос: Как изменится угол наклона свободной поверхности в цистерне, двигающейся с постоянным ускорением
[-] свободная поверхность примет форму параболы;
[-] будет изменяться;
[-] свободная поверхность будет горизонтальна;
[+] не изменится.
Вопрос: Во вращающемся цилиндрическом сосуде свободная поверхность имеет форму
[+] параболы;
[-] гиперболы;
[-] конуса;
[-] свободная поверхность горизонтальна.
Вопрос: При увеличении угловой скорости вращения цилиндрического сосуда с жидкостью, действующие на жидкость силы изменяются следующим образом
[-] центробежная сила и сила тяжести уменьшаются;
[+] центробежная сила увеличивается, сила тяжести остается неизменной;
[-] центробежная сила остается неизменной, сила тяжести увеличивается;
[-] центробежная сила и сила тяжести не изменяются
Вопрос: Площадь поперечного сечения потока, перпендикулярная направлению движения называется
[-] открытым сечением;
[+] живым сечением;
[-] полным сечением;
[-] площадь расхода.
Вопрос: Часть периметра живого сечения, ограниченная твердыми стенками называется
[-] мокрый периметр;
[-] периметр контакта;
[+] смоченный периметр;
[-] гидравлический периметр.
Вопрос: Объем жидкости, протекающий за единицу времени через живое сечение называется
[+] расход потока;
[-] объемный поток;
[-] скорость потока;
[-] скорость расхода.
Вопрос: Отношение расхода жидкости к площади живого сечения называется
[-] средний расход потока жидкости;
[+] средняя скорость потока;
[-] максимальная скорость потока;
[-] минимальный расход потока.
Вопрос: Отношение живого сечения к смоченному периметру называется
[-] гидравлическая скорость потока;
[-] гидродинамический расход потока;
[-] расход потока;
[+] гидравлический радиус потока.
Вопрос: Если при движении жидкости в данной точке русла давление и скорость не изменяются, то такое движение называется
[+] установившемся;
[-] неустановившемся;
[-] турбулентным установившимся;
[-] ламинарным неустановившемся.
Вопрос: Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени называется
[-] ламинарным;
[-] стационарным;
[+] неустановившимся;
[-] турбулентным.
Вопрос: Расход потока обозначается латинской буквой
[+] Q;
[-] V;
[-] P;
[-] H.
Вопрос: Средняя скорость потока обозначается буквой
[-] χ;
[-] V;
[+] υ;
[-] ω.
Вопрос: Живое сечение обозначается буквой
[-] W;
[-] η;
[+] ω;
[-] φ.
Вопрос: При неустановившемся движении, кривая, в каждой точке которой вектора скорости в данный момент времени направлены по касательной называется
[-] траектория тока;
[-] трубка тока;
[-] струйка тока;
[+] линия тока.
Вопрос: Трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением называется
[+] трубка тока;
[-] трубка потока;
[-] линия тока;
[-] элементарная струйка.
Вопрос: Элементарная струйка — это
[-] трубка потока, окруженная линиями тока;
[+] часть потока, заключенная внутри трубки тока;
[-] объем потока, движущийся вдоль линии тока;
[-] неразрывный поток с произвольной траекторией.
Вопрос: Течение жидкости со свободной поверхностью называется
[-] установившееся;
[-] напорное;
[+] безнапорное;
[-] свободное.
Вопрос: Течение жидкости без свободной поверхности в трубопроводах с повышенным или пониженным давлением называется
[-] безнапорное;
[+] напорное;
[-] неустановившееся;
[-] несвободное (закрытое).
Вопрос: Уравнение неразрывности течений имеет вид
[-] ω1υ2= ω2υ1 = const;
[+] ω1υ1 = ω2υ2 = const;
[-] ω1ω2 = υ1υ2 = const;
[-] ω1 / υ1 = ω2 / υ2 = const.
Вопрос: Член уравнения Бернулли, обозначаемый буквой z, называется
[+] геометрической высотой;
[-] пьезометрической высотой;
[-] скоростной высотой;
[-] потерянной высотой.
Вопрос: Уравнение Бернулли для двух различных сечений потока дает взаимосвязь между
[-] давлением, расходом и скоростью;
[-] скоростью, давлением и коэффициентом Кориолиса;
[+] давлением, скоростью и геометрической высотой;
[-] геометрической высотой, скоростью, расходом.
Вопрос: Коэффициент Кориолиса в уравнении Бернулли характеризует
[+] режим течения жидкости;
[-] степень гидравлического сопротивления трубопровода;
[-] изменение скоростного напора;
[-] степень уменьшения уровня полной энергии.
Вопрос: Показание уровня жидкости в трубке Пито отражает
[-] разность между уровнем полной и пьезометрической энергией;
[-] изменение пьезометрической энергии;
[-] скоростную энергию;
[+] уровень полной энергии.
Вопрос: Потерянная высота характеризует
[-] степень изменения давления;
[+] степень сопротивления трубопровода;
[-] направление течения жидкости в трубопроводе;
[-] степень изменения скорости жидкости.
Вопрос: Линейные потери вызваны
[+] силой трения между слоями жидкости;
[-] местными сопротивлениями;
[-] длиной трубопровода;
[-] вязкостью жидкости.
Вопрос: Местные потери энергии вызваны
[-] наличием линейных сопротивлений;
[+] наличием местных сопротивлений;
[-] массой движущейся жидкости;
[-] инерцией движущейся жидкоcти.
Вопрос: На участке трубопровода между двумя его сечениями, для которых записано уравнение Бернулли можно установить следующие гидроэлементы
[-] фильтр, отвод, гидромотор, диффузор;
[-] кран, конфузор, дроссель, насос;
[+] фильтр, кран, диффузор, колено;
[-] гидроцилиндр, дроссель, клапан, сопло.
Вопрос: Укажите правильную запись
[-] hлин = hпот + hмест;
[-] hмест = hлин + hпот;
[-] hпот = hлин — hмест;
[+] hлин = hпот — hмест.
Вопрос: Для измерения скорости потока используется
[+] трубка Пито;
[-] пьезометр;
[-] вискозиметр;
[-] трубка Вентури.
Вопрос: Для измерения расхода жидкости используется
[-] трубка Пито;
[-] расходомер Пито;
[+] расходомер Вентури;
[-] пьезометр.
Вопрос: Установившееся движение характеризуется уравнениями
[-] υ = f(x, y, z, t); P = φ(x, y, z)
[-] υ = f(x, y, z, t); P = φ(x, y, z, t)
[-] υ = f(x, y, z); P = φ(x, y, z, t)
[+] υ = f(x, y, z); P = φ(x, y, z)
Вопрос: Расход потока измеряется в следующих единицах
[-] м³;
[-] м²/с;
[-] м³ с;
[+] м³/с.
Вопрос: Для двух сечений трубопровода известны величины P1, υ1, z1 и z2. Можно ли определить давление P2 и скорость потока υ2?
[-] можно;
[+] можно, если известны диаметры d1 и d2;
[-] можно, если известен диаметр трубопровода d1;
[-] нельзя.
Вопрос: Неустановившееся движение жидкости характеризуется уравнением
[-] υ = f(x, y, z,); P = φ(x, y, z)
[-] υ = f(x, y, z); P = φ(x, y, z, t)
[+] υ = f(x, y, z, t); P = φ(x, y, z, t)
[-] υ = f(x, y, z, t); P = φ(x, y, z)
Вопрос: Значение коэффициента Кориолиса для ламинарного режима движения жидкости равно
[-] 1,5;
[+] 2;
[-] 3;
[-] 1.
Вопрос: Значение коэффициента Кориолиса для турбулентного режима движения жидкости равно
[-] 1,5;
[-] 2;
[-] 3;
[+] 1.
Вопрос: По мере движения жидкости от одного сечения к другому потерянный напор
[+] увеличивается;
[-] уменьшается;
[-] остается постоянным;
[-] увеличивается при наличии местных сопротивлений.
Вопрос: Уровень жидкости в трубке Пито поднялся на высоту H = 15 см. Чему равна скорость жидкости в трубопроводе
[-] 2,94 м/с;
[-] 17,2 м/с;
[+] 1,72 м/с;
[-] 8,64 м/с.
Вопрос: Гидравлическое сопротивление это
[-] сопротивление жидкости к изменению формы своего русла;
[-] сопротивление, препятствующее свободному проходу жидкости;
[+] сопротивление трубопровода, которое сопровождается потерями энергии жидкости;
[-] сопротивление, при котором падает скорость движения жидкости по трубопроводу.
Вопрос: Что является источником потерь энергии движущейся жидкости?
[-] плотность;
[+] вязкость;
[-] расход жидкости;
[-] изменение направления движения.
Вопрос: На какие виды делятся гидравлические сопротивления?
[-] линейные и квадратичные;
[-] местные и нелинейные;
[-] нелинейные и линейные;
[+] местные и линейные.
Вопрос: Влияет ли режим движения жидкости на гидравлическое сопротивление
[+] влияет;
[-] не влияет;
[-] влияет только при определенных условиях;
[-] при наличии местных гидравлических сопротивлений.
📸 Видео
Уравнение Бернулли. Практическая часть. 10 класс.Скачать
Уравнение Бернулли для потока жидкостиСкачать
Закон БернуллиСкачать
Парадокс сужающейся трубыСкачать
Уравнение Бернулли гидравликаСкачать
Уравнение Бернулли. Диаграмма Бернулли.Скачать
Уравнение БернуллиСкачать
Уравнение Бернулли и его приложения | Гидродинамика, ГидравликаСкачать
Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать
Якута А. А. - Механика - Гидростатика. Уравнение Бернулли. Формула ПуайзеляСкачать
Гидростатическое давлениеСкачать
Закон Бернулли и движение по инерцииСкачать
Галилео. Эксперимент. Закон БернуллиСкачать
Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать
ЛР3 Уравнение БернуллиСкачать