Правила знаков для моментов и проекций сил на оси координат:
- Правило знаков проекций сил
- Правило знаков для моментов
- Силовой баланс автомобиля
- Техническая механика
- Введение в техническую механику
- Статика
- Классификации нагрузок
- Классификации опор (реакции связей)
- Классификация реакций связей (реакций опор)
- Проекции сил на оси
- Сходящиеся силы. Условие равновесии системы сходящихся сил
- Условии равновесии статически определимых систем (уравнение проекций сил на оси и уравнение моментов)
- Кинематика
- Определение скорости и ускорении точки
- Поступательное движение
- Вращательное движение
- Плоскопараллельное движение
- Определение скоростей точек плоском плоскопараллельное движение
- Определение ускорений точек плоской фигуры совершающей плоскопараллельное движение
- Разложение составного движении точки на относительное и переносное
- Определение скоростей и ускорений точки при составном движении
- Основы теории механизмов и машин (понятии и определении)
- Классификации кинематических пар
- Рычажные механизмы. Основные виды рычажных механизмов
- Основные виды механизмов
- Структурный анализ механизмов
- Виды структурных групп
- Кулачковые механизмы
- Классификация кулачковых механизмов
- Зубчатые механизмы
- Виды зубчатых механизмов
- Определение передаточного отношении планетарной передачи
- Основы материаловедения
- Материалы, применяемые дли изготовления механизмов и машин.
- Основные механические характеристики материалов
- Основы сопротивлении материалов
- Геометрические характеристики сечений
- Виды нагружения
- Срез (сдвиг) и смятие
- Изгиб
- 🎦 Видео
Видео:Урок 104. Импульс. Закон сохранения импульсаСкачать

Правило знаков проекций сил
То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.
Например, для такой схемы нагружения:
уравнение суммы сил имеет вид
А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:
Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.
Видео:Силы в механике. 9 класс.Скачать

Правило знаков для моментов
Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.

Например, для суммы моментов относительно точки A
или, что одно и то же
Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.
При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Виды сил в механикеСкачать

Силовой баланс автомобиля
Из уравнения движения автомобиля (см. формулу 4.3) следует, что при прямолинейном движении автомобиля на подъем тяговая сила на ведущих колесах автомобиля расходуется на преодоление сил сопротивления дороги, воздуха и на его разгон:
![]() | (4.7) |
Такая форма записи называется уравнением силового баланса автомобиля и выражает соотношение между тяговой силой на ведущих колесах и силами сопротивления движению.
На основании уравнения (4.7) строится график силового баланса (рис.4.2), позволяющий оценивать тягово-скоростные свойства автомобиля.
При построении графика силового баланса сначала строится тяговая характеристика автомобиля. Затем наносят зависимость силы сопротивления дороги от скорости. Если коэффициент сопротивления дороги – постоянная величина, то указанная зависимость представляет собой прямую линию, параллельную оси абсцисс, а при непостоянном коэффициенте сопротивления дороги – кривую параболической формы.
После этого от кривой, характеризующей силу сопротивления дороги, откладывают вверх значения силы сопротивления воздуха при различных скоростях движения.
РтI, РтII, РтIII, — тяговые силы на I,II,III передачах,
Р ‘ тI – тяговая сила на I передаче при уменьшенной подаче топлива;
v1— одно из возможных значений скорости автомобиля.
Рисунок 4.2 – График силового баланса автомобиля
Кривая суммарного сопротивления дороги и воздуха Pд + Рв определяет тяговую силу Pт, необходимую для движения автомобиля с постоянной скоростью. При любой скорости движения отрезок Pз, заключенный между кривыми Pт и (Pд + Рв ), характеризует запас силы по тяге. Этот запас может быть использован при данной скорости для разгона, преодоления дополнительного дорожного сопротивления (например, подъема) или перевозки дополнительного груза (буксировка прицепа).
Запас силы по тяге на низших передачах больше, чем на высших. Именно поэтому движение в тяжелых дорожных условиях осуществляется на низших передачах.
С помощью графика силового баланса можно решать различные задачи по оценке тягово-скоростных свойств автомобиля: определение максимальной скорости, определение максимальной силы сопротивления дороги, определение максимального преодолеваемого подъема, определение ускорения движения, определение возможности буксования ведущих колес.
Максимальная скорость vmax движения автомобиля определяется точкой пересечения кривой тяговой силы Ρт на высшей передаче и суммарной кривой сил сопротивления Рд + Рв. В этой точке запас силы по тяге и ускорение автомобиля j равны нулю, а скорость движения максимальна, так как ее дальнейшее увеличение невозможно.
Максимальная сила сопротивления дороги, преодолеваемая автомобилем при движении равномерно с любой скоростью, определяется как: Pд max = Pт – Рв = Pд + Pз.
Для нахождения максимального подъема, преодолеваемого автомобилем при постоянной скорости на любой передаче, необходимо нанести на график суммарную кривую сил сопротивления качению и воздуха Рк + Pв и определить максимальную силу сопротивления подъему: Рп max=Pт – (Рк +Pв).
Зная эту силу, можно найти максимальный угол подъема αmax.
Для нахождения ускорения, которое может развить автомобиль на заданной дороге при любой скорости, нужно определить силу сопротивления разгону Ри = Pт – (Рд + Pв) = Рз, а затем можно найти ускорение, которое способен развить автомобиль при выбранной скорости движения
Для оценки возможности буксования находят силу сцепления Рсц колес с дорогой при известном коэффициенте φх и значение силы сцепления откладывают на оси ординат, а на этом уровне проводят горизонталь.
При Рсц Рт (область ниже Рсц) выполняется условие отсутствия буксования. Следовательно, при полной нагрузке двигателя безостановочное движение автомобиля без пробуксовки ведущих колес невозможно лишь на I передаче. Для движения без буксования на I передаче необходимо уменьшить подачу топлива, т.е. – тяговую силу на ведущих колесах.
Видео:Силы в механике. Практическая часть. 9 класс.Скачать

Техническая механика
Здравствуйте, на этой странице я собрала краткий курс лекций по предмету «Техническая механика».
Лекции подготовлены для студентов любых специальностей и охватывают полностью предмет «техническая механика».
В лекциях вы найдёте основные законы, теоремы, правила и примеры.
| Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу! |
Видео:Статика. Момент сил. Условия равновесия тел | Физика ЕГЭ, ЦТ, ЦЭ | Физика для школьниковСкачать

Введение в техническую механику
Техническая механика — это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.
Механическим движением — называется перемещение тела но отношению к другому телу, происходящее в пространстве и во времени.
Курс технической механики делится на три раздела: статику, кинематику и динамику.
Статика
Статикой называется раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому гелу.
Классификации нагрузок
Важнейшим понятием технической механики является понятие нагрузки.
Взаимодействие двух тел, способное изменить их кинематическое состояние, назы вается меха ни ческим взаимодействием.
Нагрузка — это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.
В механике встречается два вида нагрузки
Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения.
Сила изображается вектором. Прямая, по которой направлена данная сила, называется линией действия силы. За единицу силы в Международной системе единиц измерения СИ (в механике система МКС) принимается ньютон 
Моментом силы относительно некоторой точки на плоскости называется произведение модуля силы на ее плечо относительно этой точки, взятое со знаком плюс или минус:
Плечом силы 



Момент силы относительно точки считается положительным, если сила 

Система двух равных по модулю, параллельных и противоположно направленных сил 

Расстояние 
По характеру погружения
По характеру воздействия на тело
По характеру изменения нагрузки во времени
По форме возникновения
Классификации опор (реакции связей)
Твердое тело называется свободным, если оно может перемещаться в пространстве в любом направлении.
Тело, ограничивающее свободу движения данного твердого тела, является по отношению к нему связью.
Твердое тело, свобода движения которого ограничена связями, называется несвободным.
Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело
Одним из основных положений механики является принцип освобождаем ост и твердых тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, па которое, кроме задаваемых сил, действуют реакции связей.
Классификация реакций связей (реакций опор)
- гладкая плоскость
Реакция гладкой плоскости 
- гибкая связь
Реакция гибкой связи 
- жесткая связь
Реакция жесткой связи 
- шарнирно подвижная опора
Реакция шарнирно-подвижной опоры 
- шарнирно неподвижная опора
Направление реакции шарнирно-неподвижной опоры зависит от внешних сил, приложенных к системе. Данную реакцию задают двумя составляющими 
- жесткая заделка
Данную реакцию задают двумя составляющими, направленными перпендикулярно друг к другу и парой сил.
Проекции сил на оси
Взяв две взаимно перпендикулярные оси 




Силы 




Проекция силы на ось определяется произведением модуля силы на косинус угла между направлениями оси и силы.
Если известны проекции силы на две взаимно перпендикулярные оси 


Сходящиеся силы. Условие равновесии системы сходящихся сил
Если к телу приложены несколько сил, линии действия которых пересекаются в одной точке то такие силы называются сходящимися.
Если к телу приложено несколько сил, то данные силы можно заменить одной силой, называемой равнодействующей, под действием которой тело будет находится в нагруженном состоянии эквивалентном заданной системе.
Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.
Сходящиеся силы уравновешиваются в том случае, если их равнодействующая равна нулю, т. е. многоугольник сил замкнут.
Пример:
Известно 

Спроектируем на ось 

Спроектируем на ось 

Условии равновесии статически определимых систем (уравнение проекций сил на оси и уравнение моментов)
Тело находится в равновесии, если сумма проекций, действующих на него сил на координатную ось равны 0.
Тело находится в равновесии, если сумма моментов сил относительно какой либо точки этого тела равны 0.
Для любого тела можно составить три уравнения равновесия
Статически определимой системой называется система, в которой число неизвестных не превышает числа уравнений равновесия.
Пример:
Пример:
Кинематика
Кинематикой называется раздел механики, в котором изучается движение материальных тел в пространстве с геометрической точки зрения, вне связи с силами, определяющими это движение.
Определение скорости и ускорении точки
Скорость — это векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчета.
Ускорение точки — векторная величина, характеризующая быстроту изменения модуля и направления скорости точки.
Задание скорости и ускорения точки естественным способом
При задании точки естественным способом известен закон движения, выраженный зависимостью перемещения точки от времени
В этом случае скорость точки будет определяться как первая производная от данной зависимости
Ускорение точки будет определяться как вторая производная от зависимости перемещения или как первая производная от зависимости скорости
Пример:
Точка движется по окружности радиусом 
Определить скорость и ускорение точки в конце 3 секунды
Задание скорости точки координатным способом
При задании точки координатным способом известны законы изменения координат данной точки в зависимости от времени 
В этом случае скорость точки будет определяться как геометрическая сумма первых производных от данных зависимостей
Ускорение точки будет определяться как геометрическая сумма первых производных от зависимостей скорости или вторых производных от зависимости изменения координат
Пример:
Уравнения движения точки имеют вид
Определить уравнения скорости и ускорения данной точки
Если направление ускорения совпадает с направлением скорости (имеет одинаковый знак) то тело движется с положительным ускорением (ускоряется), если направление ускорения не совпадает с направлением скорости (имеет разные знаки) то тело движется с отрицательным ускорением (замедляется)
Поступательное движение
Поступательным движением твердого тела называется такое движение, при котором любая прямая, соединяющая две точки тела, движется параллельно самой себе.
Все точки твердого тела, движущегося поступательно, описывают тождественные и параллельные между собой траектории и в каждый момент времени имеют геометрически равные скорости и ускорения.
Уравнениями поступательного движения твердого тела являются уравнения движения любой точки этого тела — обычно уравнения движения его центра тяжести 
Для описания скорости и ускорения точки используются зависимости рассмотренные в предыдущем вопросе.
Вращательное движение
Вращательным называется такое движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.
При этом движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой
Аналогом перемещения во вращательном движении является угол поворота 
Величина, характеризующая быстроту изменения угла поворота с течением времени, называется угловой скоростью тела.
Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.
Вращение тела, при котором угловое ускорение постоянно, называют равнопеременным вращением. При этом, если абсолютная величина угловой скорости увеличивается, вращение называют равноускоренным, а если уменьшается равнозамедленным.
Рассмотрим движение точки 

Обозначим точку отсчета 


За время 



Скорость точки 

Величина окружной скорости определяется из выражения.
Из предыдущей формулы следует, что модули окружных скоростей различных точек вращающегося тела пропорциональны расстояниям от этих точек до оси вращения.
Ускорение точки 

Тангенциальное ускорение направлено по касательной к окружности в точке 
Нормальное ускорение направлено по радиусу окружности к её центру. Величина нормального ускорения определяется по зависимости
Полное ускорение точки определится из выражения
Пример:
Вращение маховика в период пуска машины определяется уравнением
где 

По уравнению вращения маховика находим его угловые скорость и ускорение
Определяем уравнение окружной скорости точки
Выражаем отсюда время
Угловая скорость
Угловое ускорение
Тангенциальное ускорение
Нормальное ускорение
Полное ускорение
Возможно эта страница вам будет полезна:
Плоскопараллельное движение
Плоскопараллельным движением твердого тела называется такое движение, при котором каждая точка тела движется в плоскости, параллельной некоторой неподвижной плоскости.
Так как положение плоской фигуры на плоскости вполне определяется положением двух ее точек или положением отрезка, соединяющего две точки этой фигуры, то движение плоской фигуры в ее плоскости можно изучать как движение прямолинейного отрезка в этой плоскости.
Предположим, что плоская фигура переместилась на плоскости из положения I в положение II. Отметим два положения отрезка 
Первый вариант. Переместим фигуру поступательно, из положения 









Второй вариант. Переместим фигуру поступательно из положения 





Как видно, поступательное перемещение плоской фигуры различно в различных вариантах, а величина угла поворота и направление поворота одинаковы, т. е.
Из этого следует, что
Плоскопараллельное движение можно рассматривать как совокупность двух движении: поступательного движения плоской фигуры вместе с произвольной точкой, называемой полюсом, и поворота вокруг полюса.
При этом поступательное перемещение зависит от выбора полюса, а величина угла поворота и направление поворота от выбора полюса не зависят.
Приняв за полюс некоторую точку 






Вращательное движение фигуры относительно полюса можно описать уравнением
Определение скоростей точек плоском плоскопараллельное движение
Скорость любой точки плоской фигуры равна геометрической сумме скорости полюса и вращательной скорости этой точки вокруг полюса.
Для плоской фигуры совершающей плоскопараллельное движение в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нулю. Эту точку называют мгновенным центром скоростей.
Способы определения мгновенного центра скоростей
- 1 Если известны прямые, по которым направлены скорости двух точек плоской фигуры
и
, то мгновенный центр скоростей фигуры определится как точка пересечения перпендикуляров к этим прямым, восставленных в точках
и
.
- 2 Если скорости точек
и
плоской фигуры параллельны между собой и перпендикулярны
, и известны модули скоростей обеих точек
и
то мгновенный центр скоростей расположен на пересечении отрезка соединяющего концы векторов точек
и
с прямой
.
- 3 Если плоская фигура катится без скольжения по некоторой неподвижной кривой то ее мгновенный центр скоростей находится в точке соприкасания данной фигуры с кривой.
Определение скоростей точек плоской фигуры при помощи мгновенного центра скоростей
Определим скорости точек 


Если точка 

т. е. скорость любой точки плоской фигуры в данный момент времени представляет собой вращательную скорость этой точки вокруг мгновенного центра скоростей; поэтому
Пример:
Колесо радиусом 

Определить скорости точек 

1-й вариант.
Примем за полюс центр колеса 


Точка 


Расстояния от точек 

Откладывая в каждой точке скорость полюса 
2-й вариант
Примем мгновенный центр скоростей колеса за полюс. Тогда скорости всех точек колеса определятся как вращательные скорости вокруг мгновенного центра скоростей.
Модули скоростей всех точек найдутся но пропорциональности скоростей их расстояниям от мгновенного центра скоростей: Найдем 
Обозначим радиус колеса через 
Возможно эта страница вам будет полезна:
Определение ускорений точек плоской фигуры совершающей плоскопараллельное движение
Ускорение любой точки плоской фигуры равно геометрической сумме ускорения полюса и ускорения этой точки во вращательном движении вокруг полюса.
Пример:
Колесо радиусом 




Определяем 

Определяем угловое ускорение.
Для точки 
Для точки 
Для точки 
Для точки 
Разложение составного движении точки на относительное и переносное
Составное движение тонки (тела) — это такое движение, при котором точка (тело) одновременно участвует в двух или нескольких движениях.
Например, составное движение совершает лодка, переплывающая реку, пассажир, перемещающийся в вагоне движущегося поезда или по палубе плывущего парохода, а также человек, перемещающийся по лестнице движущегося эскалатора.
Через произвольную точку 


Неподвижной системой отсчета называют систему осей 
Движение точки 
Скорость и ускорение точки в абсолютном движении называют абсолютной скоростью и абсолютным ускорением точки и обозначают 

Движение точки 
Скорость и ускорение точки в относительном движении называют относительной скоростью и относительным ускорением точки и обозначают 

Движете подвижной системы отсчета 




Скорость и ускорение точки тела 



Движение точки 
Основная задача изучения составного движения состоит в установлении зависимостей между скоростями и ускорениями относительного, переносного и абсолютного движений точки.
Возможно эта страница вам будет полезна:
Определение скоростей и ускорений точки при составном движении
Теорема сложения скоростей
Абсолютная скорость точки равна геометрической сумме ее переносной и относительной скоростей.
Для нахождения абсолютной скорости необходимо:
- Определить модуль и направление относительной скорости (в подвижной системе отсчета);
- Определить модуль и направление переносной скорости (скорость подвижной системы отсчета относительно неподвижной система отсчета);
- Определить геометрическую сумму относительной и переносной скоростей.
Теорема сложения ускорении
В случае непоступательного переносного движения абсолютное ускорение точки равно геометрической сумме переносного, относительного и ускорения Кориолиса.
Поворотным ускорением (ускорением Кориолиса) называется составляющая абсолютного ускорения точки в составном движении, равная удвоенному векторному произведению угловой скорости переносного вращения на относительную скорость точки:
где 
Направление ускорения Кориолиса находится но правилу: Относительную скорость точки следует спроектировать на плоскость, перпендикулярную оси переносного вращения, и повернуть эту проекцию в той же плоскости на 90°, в сторону переносного вращения.
Ускорение Кориолиса равно нулю в трех случаях:
- если
, т.е. в случае поступательного переносного движения.
- если
, т.е. в случае относительного покоя точки или в моменты обращения в нуль относительной скорости движущейся точки;
- если
вектор относительной скорости перпендикулярен оси вращения в переносном движении.
Пример:
Вертикальный подъем вертолета происходит согласно уравнению 


Свяжем подвижную систему отсчета с корпусом вертолета, неподвижную — с Землей. Относительное движение — вращение винта вокруг его оси является (это движение наблюдает пассажир вертолета, связанный с подвижной системой отсчета).
Переносное движение — является поступательное движение вертолета вертикально вверх.
Применяем теорему о сложении скоростей
Относительная скорость точки 
Если известен закон вращения винта 
Вертолёт совершает поступательное движение. Переносная скорость точки 
Применяем теорему о сложении ускорений
Винт совершает вращательное движение. Следовательно относительное ускорение точки 
Переносная скорость точки 
Ускорение Кориолиса равно нулю так как Вертолёт совершает поступательное движение 
Так как 
Пример:
Диск равномерно вращается с угловой скоростью 


Определение положения точки
Определим, на какое расстояние переместится точка за время 
Определим, на какой угол повернется желоб за время
Если тело вращается равномерно, то за 1 сек тело повернется на 1 радиан (57,32°), тогда за 0,523 с тело повернется на 0,523 рад или 57,32 0,523 = 30°
Покажем на рисунке положение точки в момент времени t = 0,523 с.
Применяем теорему о сложении скоростей
Относительную скорость точки 
Переносная скорость точки 
Так как 
Применяем теорему о сложении ускорений
Относительное ускорение точки 
Переносное ускорение точки 
Так как тело движется с постоянной угловой скоростью 
Возможно эта страница вам будет полезна:
Основы теории механизмов и машин (понятии и определении)
Классификации кинематических пар
Теория механизмов и машин — научная дисциплина (или раздел науки), которая изучает строение (структуру), кинематику и динамику механизмов.
Механизмом называется система твердых тел, предназначенная для передачи и преобразования заданного движения одного или нескольких тел в требуемые движения других твердых тел
Типовыми механизмами будем называть простые механизмы, имеющие при различном функциональном назначении широкое применение в машинах/
Звено — твердое тело или система жестко связанных гел. входящих в состав механизма.
Стойка — звено, которое при исследовании механизма принимается за неподвижное.
Входное звено — звено, которому сообщается заданное движение и соответствующие силовые факторы (силы или моменты);
Выходное звено — то, на котором получают требуемое движение и силы.
Кинематическая цепь — система звеньев, образующих между собой кинематические пары.
Кинематическая пара — подвижное соединение двух звеньев, допускающее их определенное относительное движение.
Элементами кинематической пары называют совокупность поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую пару.
В зависимости от вида контакта элементов кинематических пар они делятся на высшие и низшие.
Кинематические пары, образованные элементами в виде линии или точки называются высшими.
Кинематические пары, образованные элементами в виде поверхностей, называются низшими.
В зависимости от степени подвижности они делятся на
- одноподвижные;
- двухподвижные;
- трехподвижные;
- четырех подвижные;
- пятнподвижные;
Рычажные механизмы. Основные виды рычажных механизмов
Рычажным называется механизм, звенья которого образуют только вращательные и поступательные пары.
Составляющие рычажных механизмов.
- Стойка — неподвижное звено, предназначенное для присоединения подвижных звеньев.
- Кривошип — звено совершающее полное вращательное движение вокруг неподвижной оси.
- Ползун — звено совершающее поступательное движение вдоль некоторой прямой.
- Коромысло — звено совершающее неполное вращательное движение вокруг неподвижной оси.
- Шатун — звено совершающее нлоскопараллельное движение и несвязанное со стойкой.
- Кулиса — звено совершающее вращательное либо сложное движение и образующее поступательную кинематическую пару с другим подвижным звеном — кулисным камнем.
- Кулисный камень — звено совершающее составное движение (поступательное кулисы в относительном движении, и вращательное вместе с кулисой в переносном движении).
Основные виды механизмов
Кривошинно-шатунный механизм (Шарнирный чет ырехзвенник)
Состоит из кривошипа 1, шатуна 2, коромысла 3 и стойки, связанных между собой вращательными кинематическими парами
Состоит из кривошипа 1, шатуна 2, ползуна 3 и стойки, связанных между собой вращательными кинематическими парами 
Состоит из кривошипа 1, кулисного камня 2, кулисы 3 и стойки, связанных между собой вращательными кинематическими парами 
Структурный анализ механизмов
Структурный анализ механизма — это расчленение его на структурные группы. Структурные группы (группы Ассура) — это кинематические цепи, которые после присоединения к стойке имеют степень подвижности 
Степень подвижности механизма определяется по формуле Чебышева для рычажных механизмов.



Структурную формулу любого простого или сложного механизма, образованного с помощью структурных групп, можно представить следующим образом:
За начальный механизм принимается ведущее звено со стойкой.
Все механизмы и структурные группы, в них входящие, делятся на классы, а класс-механизма в целом определяется высшим классом структурной группы, которая в него входит.
Элементарные механизмы условно отнесены к механизмам 1 класса.
Класс структурной группы определяется числом максимальным числом кинематических пар, на одном звене.
Порядок группы определяется числом внешних кинематических нар.
Виды структурных групп
Диада — структурная группа II класса, 2 порядка (И, 2) Состоит из двух звеньев и трех кинематических пар.
Трехповодок (Триада) — структурная группа III класса, 3 порядка (III, 3) Состоит из четырех звеньев и шести кинематических пар.
Порядок выполнения структурного анализа:
- Определение названья звеньев и кинематических пар.
- Определение степени подвижности механизма.
- Разложение механизма на структурные группы Асура.
- Определение класса и порядка всего механизма и построение формулы строения механизма.
Пример:
Пример:
Возможно эта страница вам будет полезна:
Кулачковые механизмы
Кулачковые механизмы, подобно другим механизмам, служат для преобразования одного вида движения (на входе), в другой вид движения (на выходе) с одновременным преобразованием передаваемых силовых параметров (сил, моментов).
Основным преимуществом является возможность получения любого закона движения ведомого звена.
Кинематическая цепь простейшего кулачкового механизма состоит из двух подвижных звеньев (кулачка и толкателя), образующих высшую кинематическую пару, и стойки, с которой каждое из этих звеньев входит в низшую кинематическую пару.
Ведущим звеном механизма обычно является кулачок, который в большинстве случаев совершает непрерывное вращательное движение.
Ведомое звено, называемое толкателем, совершает возвратно-прямолинейное и возвратно-вращательное движение относительно стойки.
Классификация кулачковых механизмов
По виду выходного звена
По виду толкателя
По расположению толкателя
Основные параметры кулачка
Профиль кулачка — это профиль, образованный центром ролика обеспечивающий заданный закон движения ведомого звена.
Минимальный радиус кулачка 
Максимальный радиус кулачка 
Максимальный подъем толкателя — расстояние между минимальным и максимальным радиусами кулачка 
За один оборот кулачка происходит последовательное удаление толкателя от центра вращения кулачка, затем остановка и приближение к центру кулачка, вновь остановка и повторение всего цикла движения. Эти четыре этапа в движении кулачкового механизма называются фазами движения, которые ограничены соответствующими углами, называемыми фазовыми углами.
Фаза удаления 
Фаза дальнего стояния 
Фаза возврата 
Фаза ближнего стояния 
В некоторых кулачковых механизмах фазы ближнего и дальнего стояния могут отсутствовать, сразу обе или одна.
Рабочий угол кулачка — угол кулачка равный сумме углов удаления, дальнего стояния и возврата.
Угол давления — угол 
Зубчатые механизмы
Принцип действия и классификации. Основные параметры, геометрии и кинематика прямозубых колёс.
Принцип действия зубчатой передачи основан на зацеплении пары зубчатых колес.
Классификация:
По расположению осей валов:
- передачи с параллельными осями;
- передачи с пересекающимися осями;
- передачи с перекрещивающимися осями. По расположению зубьев на колесах:
- прямозубые
- косозубые.
По форме профиля зуба:
Основные параметры:
Ведущее зубчатое колесо называют шестерней, а ведомое — колесом. Параметрам шестерни приписывают индекс 1, а параметрам колеса — 2.
Геометрические параметры: 






Модули стандартизованы (ГОСТ 9563-80) в диапазоне 0,05… 100 мм






При нарезании колес со смещением делительная плоскость рейки смещается к центру или от центра заготовки на 


У передач без смещения и при суммарном смещении 

где 


где 

Передаточное отношение 
Виды зубчатых механизмов
Зубчатый механизм, составленный из зубчатых колес с неподвижными осями, называется зубчатым рядом.
Зубчатый ряд, состоящий из двух колес стойки, есть рядовая передача.
Значение передаточного отношения рядовой передачи обратно пропорционально числу зубьев колес:
Знак перед дробью позволяет учесть направление вращения колес. Для внешнего зацепления принят знак (-), учитывающий противоположность вращения колес. Для внутреннего зацепления принят знак (+).
Передаточное отношение любого зубчатого ряда равно произведению передаточных отношений всех передач, входящих в него:
где 
Определить передаточное отношение 
Общее передаточное отношение механизма равно:
Колесо 
Зубчатый механизм, в состав которого входят зубчатые колеса с геометрически подвижной осью называются планетарным механизмом. В состав планетарного механизма входят звенья: Сателлиты — зубчатые колеса с геометрически подвижной осью;
Водило — подвижное звено, в котором помещена ось сателлита;
Солнечное колесо — подвижное центральное зубчатое колесо; Опорное колесо (эпицикл) — неподвижное центральное зубчатое колесо;
Геометрическая ось центральных колес и водила общая. Для обеспечения этого используют условие соосности
Определение передаточного отношении планетарной передачи
При исследовании кинематики планетарных передач широко используют метод остановки водила — метод Виллиса.
Всей планетарной передаче мысленно сообщается вращение с частотой вращения водила, но в обратном направлении. При этом водило, как бы затормаживается, а все другие звенья освобождаются. Получаем так называемый обращенный механизм, представляющий собой простую передачу, в которой движение передается от 


Для исследуемого механизма:
Для обращенного механизма:
В нашем случае 4 заторможено, 1 — ведущее и 

Основы материаловедения
Материалы, применяемые дли изготовления механизмов и машин.
Основным машиностроительным материалом является сплав железа и углерода, называемый чугуном или сталью в зависимости от процентного содержания углерода в сплаве.
Чугун содержит углерода свыше 2%. Различают:
Серый чугун (основной материал для литых деталей)
Маркировка: СЧ и цифры, соответствующие пределу прочности при растяжении (СЧ15- 150 МПа, СЧ20 — 200 МПа)
Свойства: жесткость, сравнительно малая прочность, хрупкость, хорошие литейные свойства,относительная дешевизна.
Высокопрочный чугун (чугун с повышенной прочностью).
Маркировка: ВЧ и цифры, соответствующие пределу прочности при растяжении (ВЧ40, ВЧ35)
Ковкий чугун (чугун с повышенным коэффициентом относительного удлинения)
Маркировка: КЧ 30-6, где 30 — предел прочности, 300 МПА; 6 — относительное удлинение, %.
Белый и отбеленный чугуны (не применяется).
Сталь — сплав железа с углеродом с содержанием углерода менее 1,6 %.
Сталь общего назначения (применяется для сварных соединений и в неответственных деталях)
Маркировка: ст 3, ст 5 (цифра обозначает условный номер марки в зависимости от химического состава)
Сталь качественная конструкционная (применяется для изготовления валов, стаканов, и.т.д.)
Маркировка: сталь 25, сталь 45 и т.п. Здесь цифры указывают содержание углерода в сотых долях процента.
Легированные стали (применяется для изготовления ответственных деталей зубчатых колес, червяков, цепей и.т.д) — это качественная конструкционная сталь с легирующими добавками, которые существенно улучшают свойства стали. В качестве легирующих добавок-чаще всего используют никель, хром, марганец и другие металлы.
Маркировка: сталь 40Х, сталь 40ХН, сталь 40 Х2Н. (здесь буквами X и Н обозначены хром и никель в количестве до 1%).
Сплавы на основе цветных металлов (применяются для изготовления венцов червячных колес, вкладышей подшипников скольжения и.т.д):
Сплав на основе меди:
- латунь — сплав медь-цинк;
- бронза — сплав медь-олово, медь-свинец, медь-алюминий.
- баббиты — сплавы на основе олова, свинца — баббиты.
Алюминиевые сплавы (используются для изготовления неответственных литых штампованных деталей ):
- силумины (сплавы с кремнием) — хорошо льются.
Маркировка: АЛ2, АЛ4 и т.п;
- дюралюмины (сплавы с медью и/или марганцем) — это деформируемые сплавы. Маркировка: Д1, Д16 и др.,
Основные механические характеристики материалов
Основные механические характеристики материала определяются при испытании образцов материала.
Рассмотрим цилиндр, находящийся под действием растягивающей силы 
Под действием силы 

где 
Постепенно будем увеличивать нагрузку 
Для большинства материалов зависимость между напряжениями и деформациями выглядит следующим образом
Данная зависимость имеет следующие характерные точки:
Предел пропорциональности 


Предел упругости 
Предел текучести 
Предел прочности 
К основным характеристикам материалов также относятся:
- Модуль упругости
— отношение нормального напряжения
(в пределах
) к соответствующей относительной продольной деформации
.
- Твердость — свойство материала сопротивляться внедрению в него другого, более твердого гела.
- Для измерения твёрдости существует несколько шкал (методов измерения):
- Метод Бринелли — твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость, определённая по этому методу, обозначается
.
- Метод Роквелла — твёрдость определяется по относительной глубине вдавливания алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу обозначается
.
- Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость, определённая по этому методу, обозначается
.
Основы сопротивлении материалов
Геометрические характеристики сечений
Детали механизмов и машин отличаются друг от друга по форме и размерам. При расчета на прочность деталей механизмов и машин используются поперечные сечения деталей, имеющие свои геометричекие характеристики.
Рассмотрим геометричекие характеристики плоских сечений.
Площадь —
Статический момент относительно оси 

где 


Статический момент сложного сечения относительно некоторой оси равен сумме статических моментов всех частей этого сечения относительно той же оси:
где 



Последнее выражение позволяет определить положение центра тяжести для любого составного сечения
Пример:
Определить положение центра тяжести сечения показанного на рисунке.
Проводим оси 

Находим расстояние от центров тяжестей фигур до осей
Записываем выражение для статических моментов инерции
Осевой момент инерции относительно оси сумма произведений площадей элементарных площадок 
Полярный момент инерции плоского сечения относительно некоторой точки (полюса) 

Пример:
Определить осевые и полярный моменты инерции прямоугольника высотой 



Представим 
Представим 
Осевой момент сопротивления относительно оси — отношение осевого момента инерции к расстоянию от наиболее удаленной точки сечения по этой оси
Полярный момент сопротивления относительно точки (полюса) — отношение полярного момента инерции к расстоянию от наиболее удаленной точки сечения до полюса
Пример:
Для предыдущего примера определить осевые и полярные моменты сопротивления
Для основных сечений формулы для расчета геометрических характеристик приводятся в технических справочниках.
Виды нагружения
Растяжение-сжатие
При воздействии на тело силы, линия действия которой проходит по оси данного тела, в поперечном сечении (перпендикулярном линии действия силы) возникают напряжения, называемые напряжениями растяжения или сжатия, в зависимости от направления действия силы.
В случае растяжения-сжатия прочность тела оценивается но формуле
где 





Для удобства представления информации на расчетной схеме напряжения представляются в виде эпюр.
Эпюра — группа условных линий, показывающих величину и направление напряжений, возникающих в рассматриваемом теле.
Если по длине тела изменяются размеры поперечного сечения или приложенная нагрузка, то изменятся и величина напряжений
Пример:
Построить эпюры напряжений для бруса, изображенного на рисунке.
Решение. Для определения внутренних усилий разбиваем прямолинейный брус на участки. Границами участков являются точки продольной оси, соответствующие изменению площади поперечного сечения и точкам приложения сосредоточенных сил.
Проводим сечение I-I. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке I:
Проводим сечение II—II. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке II:
Проводим сечение III—III. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке III:
Проводим сечение IV-IV. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке IV:
Срез (сдвиг) и смятие
Срезом называют деформацию, представляющую собой смещение поперечных плоскостей тела под действием силы параллельной этой плоскости.
Касательные напряжения при срезе (напряжения среза) определяются по формуле
где 

Смятием называют деформацию, представляющую собой нарушение первоначальной формы поверхности под действием силы перпендикулярной к этой поверхности.
Нормальные напряжения при смятии (напряжения смятия) определяются по формуле
Определить напряжения среза и смятия для заклепки соединяющей три детали. Известны диаметр заклепки 
Запишем условие прочности на срез для заклепки
В соединении 3-х деталей напряжения среза возникают в двух сечениях круглой формы.
Площадь круга 
Запишем условие прочности на смятие для заклепки
В соединении 3-х деталей напряжения смятия возникают на боковых поверхностях заклепки площадь которых будет определяться:
Для верхней и нижней поверхностей:
Для средней поверхности:
Тогда напряжения смятия
Для верхней и нижней поверхностей:
Для средней поверхности:
Возможно эта страница вам будет полезна:
Изгиб
Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.
Изгиб называют чистым если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки).
Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы.
При изгибе в сечении деталей возникают нормальные напряжения 
Напряжения изгиба определяются по формуле
На практике изгиб тела вызывает не только внешние изгибающие моменты, но и поперечные силы, действующие на тело. Для нахождения наиболее нагруженного поперечного сечения строят эпюры изгибающих моментов.
При построении эпюр изгибающих моментов используются следующие правила:
- Тело разбивается на участки, границами которых служат точки приложения внешних сил и моментов и реакции опор;
- Построение ведется последовательно, по участкам, путем проведения сечений, проходящих через середину участка и отбрасывания части тела лежащей за сечением. Для неотброшенной части тела составляется зависимость по которой изменяется изгибающий момент и определяется его значение в начале и конце участка;
- Построение эпюры ведется о стороны растянутых волокон;
- Если в рассматриваемом сечении приложен внешний момент, то на эпюре наблюдается скачек на величину этого момента.
Построение эпюр изгибающих моментов рассмотрим на примере.
Пример:
Проверить на прочность балку постоянного сечения, показанную на рисунке, если известно, что осевой момент сопротивления ее сечения 

🎦 Видео
Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.Скачать

Динамика. Равнодействующая и результирующая сил. Виды сил в механике | Физика ЕГЭ, ЦТСкачать

Силы в механике. Практическая часть. 9 класс.Скачать

Урок 39 (осн). Сила трения. Коэффициент тренияСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 32 (осн). Сила. Единицы силы. Изображение силСкачать

Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физикеСкачать

Момент силыСкачать

Физика - импульс и закон сохранения импульсаСкачать

Механика - Силы в механике v1Скачать

ФИЗИКА ЗА 5 МИНУТ - МЕХАНИКАСкачать

Силы в механикеСкачать

Закон БернуллиСкачать

КАК РАБОТАЮТ СИЛЫ В МЕХАНИКЕ? | CИЛЫ В МЕХАНИКЕ | Видеоурок по физике №8Скачать

Как решить любую задачу по механике. АлгоритмСкачать





































































и
, то мгновенный центр скоростей фигуры определится как точка пересечения перпендикуляров к этим прямым, восставленных в точках
, и известны модули скоростей обеих точек 
























, т.е. в случае поступательного переносного движения.
, т.е. в случае относительного покоя точки или в моменты обращения в нуль относительной скорости движущейся точки;
вектор относительной скорости перпендикулярен оси вращения в переносном движении.
































































— отношение нормального напряжения
(в пределах
) к соответствующей относительной продольной деформации
.
.
.
.







































