Уравнение баланса мощностей в интегральной форме

Видео:Баланс мощностей | Активная мощностьСкачать

Баланс мощностей | Активная мощность

Уравнение баланса мгновенных значений мощности

Как уже отмечалось в 1.1, электромагнитное поле является одной из форм материи. Как и любая другая форма материи, оно обладает энергией. Эта энергия может распространяться в про­странстве и преобразовываться в другие формы энергии.

Сформулируем уравнение баланса для мгновенных значений мощности применительно к некоторому объему V, ограниченному поверхностью S (рис. 1.23). Пусть в объеме V, заполненном од­нородной изотропной средой, находятся сторонние источники. Из общих физических представлений очевидно, что мощность, выделяемая сторонними источниками, может расходоваться на джоулевы потери и на изменение энергии электромагнитного поля внутри V, а также может частично рассеиваться, уходя в ок­ружающее пространство через поверхность S. При этом должно выполняться равенство

Уравнение баланса мощностей в интегральной форме, (1.120)

где Рст – мощность сторонних источников;

Рп мощность джоулевых потерь внутри объема V;

Уравнение баланса мощностей в интегральной форме мощность, проходящая через поверхность S;

W энергия электромагнитного поля, сосредоточен­ного в объеме V, adW/dt мощность, расходуе­мая на изменение энергии в объеме V.

Уравнение баланса мощностей в интегральной форме

Рис. 1.23. Объем V, ограниченный поверхностью S

В данном разделе будут использованы уравнения состояния (1.53). Эти уравнения не позволяют учесть потери энергии при поляризации и намагничивании среды. Поэтому слагаемое Рпв равенстве (1.120) фактически определяет мощность джоулевых потерь в объеме V, обусловленных током проводимости.

Уравнение (1.120) дает только качественное представление об энергетических соотношениях. Чтобы получить количественные соотношения, нужно воспользоваться уравнениями Максвелла. Рассмотрим первое уравнение Максвелла с учетом сторонних то­ков (1.111). Все члены этого уравнения – векторные величины, имеющие размерность А/м2.

Чтобы получить уравнение, аналогичное (1.120), нужно видоизменить первое уравнение Максвелла (1.111) так, чтобы его члены стали скалярными величинами, измеряющимися в ваттах. Для этого достаточно все члены указанного равенства скалярно умножить на вектор Е, а затем проинтегрировать полученное выражение по объему V. После скалярного умножения на вектор Е получаем

Уравнение баланса мощностей в интегральной форме(1.121)

Используя известную из векторного анализа формулу div[E,H]= Н rot Е – Е rot H, преобразуем левую часть соотношения (1.121) и заменим rot E его значением из второго уравнения Максвелла (1.39):

Уравнение баланса мощностей в интегральной форме

Подставляя это выражение в (1.121), получаем

Уравнение баланса мощностей в интегральной форме(1.122)

В последнем слагаемом в правой части (1.122) изменен порядок сомножителей в скалярном произведении векторов Уравнение баланса мощностей в интегральной формеи Н. Это допустимо, так как Уравнение баланса мощностей в интегральной форме. Данное изменение не яв­ляется принципиальным и не дает никаких преимуществ при выводе рассматриваемого здесь уравнения баланса для мгно­венных значений мощности. Однако при такой записи во всех членах уравнения (1.122) второй сомножитель (векторы jст, j, Уравнение баланса мощностей в интегральной формеи Н) является вектором, входившим ранее в первое уравнение Максвелла. Это обстоятельство позволит в дальнейшем (см. 1.8.4) несколько упростить вывод уравнения баланса в случае моно­хроматического поля (уравнения баланса комплексной мощности). Интегрируя почленно уравнение (1.122) по объему V, получаем

Уравнение баланса мощностей в интегральной форме(1.123)

где направление элемента dSсовпадает с направлением внешней нормали к поверхности S. При переходе от (1.122) к (1.123) ис­пользована теорема Остроградского – Гаусса для перевода объемного интеграла от div [Е, Н] в поверхностный интеграл от вектор­ного произведения [Е, Н]. Введем обозначение

и преобразуем подынтегральное выражение в последнем слагаемом в правой части (1.123):

Уравнение баланса мощностей в интегральной форме

Уравнение баланса мощностей в интегральной форме(1.125)

Подставляя (1.124) и (1.125) в (1.123) и меняя порядок интег­рирования и дифференцирования, получаем

Уравнение баланса мощностей в интегральной форме. (1.126)

Выясним физический смысл выражений, входящих в уравнение (1.126).

Рассмотрим первое слагаемое в правой части (1.126). Пред­ставим объем Vввиде суммы бесконечно малых цилиндров длиной dl, торцы которых (dS) перпендикулярны направлению тока (вектору j). Тогда EjdV= EjdV= (Edl)(jdS) = dUdl= dPп, где dl=jdS ток, протекающий по рассматриваемому бесконечно мало­му цилиндру; dU= Edl изменение потенциала на длине dl, adPп мощность джоулевых потерь в объеме dV. Следовательно, рас­сматриваемое слагаемое представляет собой мощность джоу­левых потерь Рп в объеме V. Используя соотношение j = σЕ, для Рп можно получить и другие представления:

Уравнение баланса мощностей в интегральной форме(1.127)

Формулы (1.127) можно рассматривать как обобщенный закон Джоуля-Ленца (П. 33), справедливый для проводящего объема Vпроизвольной формы.

Интеграл в левой части (1.126) отличается от первого сла­гаемого в правой части только тем, что в подынтегральное выражение вместо j входит jст. Поэтому он должен определять мощность сторонних источников. Будем считать положительной мощность, отдаваемую сторонними токами электромагнитному по­лю. Электрический ток представляет собой упорядоченное дви­жение заряженных частиц. Положительным направлением тока считается направление движения положительных зарядов. Ток отдает энергию электромагнитному полю при торможении обра­зующих его заряженных частиц. Для этого необходимо, чтобы вектор напряженности электрического поля Е имел составляющую, ориентированную противоположно направлению тока, т.е. чтобы скалярное произведение векторов Е и jст было отрицательным (Ejст Будет полезно почитать по теме:

Видео:2.4 Уравнения баланса мощностей в электромагнитном полеСкачать

2.4 Уравнения баланса мощностей в электромагнитном поле

Тема 4. баланс энергии ЭМП

Плотность ЭМ энергии и энергия, сосредоточенная в объеме. Мощность тепловых потерь и сторонних источников. Уравнение баланса для мгновенных значений мощности в дифференциальной и интегральной форме (теорема Умова – Пойнтинга). Физическая трактовка. Мощность, выходящая и входящая из объема через замкнутую поверхность. Вектор Пойнтинга. Мощность на входе приемника. Вектор Пойнтинга изотропного источника.

Средние за период значения энергетических характеристик гармонического ЭМП. Теорема Умова – Пойнтинга для комплексных мощностей. Комплексный вектор Пойнтинга. Уравнения баланса для активных и реактивных мощностей. Физическая трактовка. Скорость переноса энергии ЭМП.

Указания к теме

Поскольку ЭМ форма движения материи подчиняется закону сохранения энергии, непосредственно из системы уравнений Максвелла следует уравнение баланса энергии ЭМП (теорема Умова – Пойнтинга).

Необходимо учесть, что источником ЭМП является сторонняя сила, которую поддерживают посторонние по отношению к исследуемому полю источники. Сторонние источники не зависят от исследуемого поля и вводятся в основные уравнения ЭМП в виде дополнительных слагаемых.

При изучении этой темы важно уяснить физическое содержание каждого слагаемого уравнений баланса энергии как для некоторой области, так и для любой точки пространства. Необходимо рассмотреть различные виды балансов энергии (пассивный, нейтральный, активный) на примере LC-контура, чтобы уяснить связь между вектором Пойнтинга и движением энергии, ее излучением или поглощением, притоком или оттоком, скоростью движения энергии.

При изучении гармонических полей нужно обратить внимание на средние за период энергетические характеристики ЭМП, физическое содержание вещественной и мнимой частей вектора Пойнтинга.

Необходимо уяснить связь вектора Пойнтинга с мощностью, принимаемой антенной в дальней зоне приема, а также понять, почему плотность потока энергии изотропного источника убывает при удалении от него даже при отсутствии потерь в пространстве.

Основные сведения

После преобразования уравнений (2.5)–(2.8) [1–6] получаем дифференциальнуюформу теоремы Умова – Пойнтинга

Уравнение баланса мощностей в интегральной форме. (4.1)

После интегрирования по объему (4.1) и преобразований получаем

Уравнение баланса мощностей в интегральной форме. (4.2)

Каждое слагаемое в выражении (4.2) имеет размерность мощности

Уравнение баланса мощностей в интегральной форме. (4.3)

Уравнения (4.2)–(4.3) позволяют сформулировать теорему Умова –Пойнтинга: «Мощность стороннего источника в данном объеме расходуется на излучение, тепловые потери и изменение запаса энергии ЭМП» [1–3].

Мощность тепловых потерь (потерь проводимости) подчиняется закону Дж. Джоуля – Э. Ленца. Изменение запаса энергии имеет размерность мощности :

Уравнение баланса мощностей в интегральной форме, (4.4)

Вектор Уравнение баланса мощностей в интегральной форменазывается вектором Пойнтинга. По теореме Остроградского – Гаусса [1–3] Уравнение баланса мощностей в интегральной форме.

Вектор Пойнтинга указывает направление распространения излучения, а его модуль представляет собой плотность потока мощностиизлучения.

В комплексной форме уравнения (4.2) и (4.3) имеют вид [1]

Уравнение баланса мощностей в интегральной форме; (4.5)

Уравнение баланса мощностей в интегральной форме, (4.6)

где Уравнение баланса мощностей в интегральной форме; Уравнение баланса мощностей в интегральной форме; Уравнение баланса мощностей в интегральной форме,

а Уравнение баланса мощностей в интегральной формеи Уравнение баланса мощностей в интегральной форме– энергия магнитного и электрического полей соответственно.

Выражение (4.6) – баланс комплексных мощностей в объеме V.

Рассмотрим баланс ЭМ энергии (4.3) в контуре, представляющем замкнутую электрическую цепь из элементов с сосредоточенными параметрами (рис. 4.1).

Уравнение баланса мощностей в интегральной формеЭнергия стороннего источника расходуется на тепловые потери, которые сосредоточены в активном сопротивлении Rт, на изменение запаса ЭМ энергии в контуре (электрическая энергия накапливается в емкости C, а магнитная – в индуктивности L), на излучение из контура (элемент взаимной индуктивности Мik с другим контуром и «излучающий конденсатор» – электрический вибратор.

Выделим действительную и мнимую части уравнения (4.6)

Уравнение баланса мощностей в интегральной форме; (4.7)

Уравнение баланса мощностей в интегральной форме. (4.8)

Действительная часть Уравнение баланса мощностей в интегральной формехарактеризует перенос энергии через граничную поверхность области V в окрестности точки наблюдения, а мни­мая часть Уравнение баланса мощностей в интегральной формеколебание энергии через ту же поверхность [1, 12].

Из выражения (4.7) следует, что средняя мощность стороннего источника тратится на тепловые потери в объеме V и на создание ЭМП за пределами V.

Из выражения (4.8) следует, что реактивная мощность стороннего источника расходуется на создание потока реактивной мощности через границу V и на создание запаса реактивной энергии в объеме V. Реактивная мощность характеризует процесс обмена энергией между источником и цепью. При Pр > 0 энергия запасается в магнитном поле, а при Pр

Дата добавления: 2018-09-24 ; просмотров: 2074 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Баланс мощностейСкачать

Баланс мощностей

Баланс мощностей электрической цепи

Электрическая цепь предполагает передачу определенной мощности от источника к потребителю. При этом, должно сохраняться равновесие, если схема состоит из сопротивлений, индуктивности. Статья раскроет тему, что такое баланс мощностей в простой цепи переменного тока. Будет описан этот показатель для постоянного напряжения, приведены формулы вычисления.

Видео:#П.4 Уравнение баланса мощностей / мощность потребителя / мощность генератораСкачать

#П.4 Уравнение баланса мощностей / мощность потребителя / мощность генератора

Определение

Вычисление данного параметра в электрической цепи основано на известном законе сохранения энергии. Из него следует, что мгновенные показатели, передаваемые от источника, должны быть равны сумме значений, которую получают потребители.

Баланс для мощностей представляет собой общеизвестный нам закон сохранения энергии. Выражение данного закона в этом случае — сумма всей энергии от источников (генератора или блока питания) равняется сумме, которую получают приемники.

Уравнение баланса мощностей в интегральной форме

Можно использовать альтернативный вариант. Для него формула при этом имеет вид как на рисунке ниже:

Уравнение баланса мощностей в интегральной форме

Стоит принять во внимание, что любая электрическая схема имеет сопротивление. Описываемая величина с сопутствующими значениями рассчитывается с учетом разновидности напряжений. Принимая во внимание закон сохранения энергии, стоит учитывать, что по электрической схеме всегда передается энергия.

Видео:Проверка решений балансом мощностей | Теоретическим основам электротехникиСкачать

Проверка решений балансом мощностей | Теоретическим основам электротехники

Назначение

Составление простого баланса мощностей используют для точного определения расхождений между передаваемой и получаемой энергиями. Также, уравнение баланса мощностей применяется для решения многих электротехнических задач.

Видео:Расчет цепи с ИСТОЧНИКОМ ТОКА по законам КирхгофаСкачать

Расчет цепи с ИСТОЧНИКОМ ТОКА по законам Кирхгофа

Переменный ток

Баланс мощностей в простой цепи переменного тока рассчитывается по более сложной формуле. Баланс мощностей в простой цепи синусоидального тока учитывает комплексные, реактивные и активные параметры.

  1. Комплексная. Состоит из мощностей передаваемых и получаемых. Необходимо будет выполнить расчет, в котором все слагаемые левой части формулы являются положительными (идут со знаками +), при условии, когда совпадает направление заряженных частиц «Ik» с «ЭДС». Должно соблюдаться правило не совпадения «Jk» с направлением напряжения «Uk». Если условия не соответствуют установленным требованиям, все данные левой части формулы становятся отрицательными. Формула приведена ниже.Уравнение баланса мощностей в интегральной форме
  2. Активные. Значения, отдающиеся источником равны принимаемым потребителями. Вычисление активной мощности полностью зависит от представленной комплексной энергии. Активное значение является расходуемым, невосполнимым, так как уходит на работу приборов. Данный метод вычисления и его формула представлены ниже.Уравнение баланса мощностей в интегральной форме
  3. Реактивная мощность источника с потребителем равны. Единственное отличие заключается в том, что этот параметр не растрачиваемый. Данный показатель просто циркулирует по схеме. Формула представлена ниже.

Уравнение баланса мощностей в интегральной форме

Главное отличие рассматриваемой величины — это наличие ненаправленного движения переменного тока по проводникам. Параметр такой схемы может быть увеличен или уменьшен (например, генератором), что может повлиять на конечный результат.

Видео:Баланс мощностей цепи переменного тока│Активная, реактивная и полная мощностиСкачать

Баланс мощностей цепи переменного тока│Активная, реактивная и полная мощности

Постоянный ток

В электрической цепи постоянного тока напряжение и мощность всегда одного значения. Поэтому сделать вычисление намного проще. Можно сделать расчет на основе достаточно простого примера.

  1. В цепи имеется ЭДС «Е» и резистор «R». При расчете должна быть найдена сила тока.Уравнение баланса мощностей в интегральной форме
  2. I=E/R. Подставляем имеющиеся значения, получаем I=10/10=1 ампер.
  3. Так мы нашли силу тока. Теперь нам будет нужен параметр мощности приемника «R» и источника.
  4. Pист=I×E=1×10=10 Ватт. Это значение для источника.
  5. Теперь для того, чтобы найти Р для приемника делаем расчет как на рисунке ниже.Уравнение баланса мощностей в интегральной форме
  6. Теперь составим общий баланс — 10 ватт=10 ватт. Данный подсчет показал, что для представленной схемы сохраняется равновесие.

При вычислении параметров этой схемы имеет смысл учесть расход приемника. Резистор при нагреве выделяет тепло, а значит выполняется преобразование электричества в тепло. Беря во внимание физический закон сохранения, тепло выделяемое резистором также будет равно 10 Ватт.

Видео:3.4 Уравнения баланса мощностей в монохроматическом полеСкачать

3.4 Уравнения баланса мощностей в монохроматическом поле

Заключение

В статье было приведено описание, способ расчета баланса мощностей для постоянного и переменного тока. Для электротехники данный баланс очень важен, ведь с помощью него можно выполнять различные расчеты.

Видео:Метод контурных токов - определение токов. ЭлектротехникаСкачать

Метод контурных токов - определение токов. Электротехника

Видео по теме

🔥 Видео

Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать

Урок 4. Расчет цепей постоянного тока. Законы Кирхгофа

Мощность в цепях синусоидального тока. Баланс мощностейСкачать

Мощность в цепях синусоидального тока.  Баланс мощностей

Работа и мощность электрического тока. Баланс мощностей в электрической цепи. КПД электрической цепиСкачать

Работа и мощность электрического тока. Баланс мощностей в электрической цепи. КПД электрической цепи

Баланс мощностей. Пример 1Скачать

Баланс мощностей. Пример 1

Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Закон Ома для участка цепи. Электрическое сопротивление проводника. 8 класс.Скачать

Закон Ома для участка цепи. Электрическое сопротивление проводника. 8 класс.

Коэффициент мощности (cos φ) Активная, реактивная и полная мощность. Как исправить плохой коэфицент.Скачать

Коэффициент мощности (cos φ) Активная, реактивная и полная мощность. Как исправить плохой коэфицент.

Мощность в цепи переменного тока. 11 класс.Скачать

Мощность в цепи переменного тока. 11 класс.

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Урок 363. Мощность в цепи переменного токаСкачать

Урок 363. Мощность в цепи переменного тока

Закон БернуллиСкачать

Закон Бернулли
Поделиться или сохранить к себе: