Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

8.2.2. Решение полных квадратных уравнений

I. ax 2 +bx+c=0 – квадратное уравнение общего вида

Дискриминант D=b 2 — 4ac.

Если D>0, то имеем два действительных корня:

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Если D=0, то имеем единственный корень (или два равных корня) х=-b/(2a).

Если D 2 +5x-3=0.

Решение. a=2; b=5; c=-3.

D=b 2 — 4ac=5 2 -4∙2∙(-3)=25+24=49=7 2 >0; 2 действительных корня.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Пример 2) 4x 2 +21x+5=0.

Решение. a=4; b=21; c=5.

D=b 2 — 4ac=21 2 — 4∙4∙5=441-80=361=19 2 >0; 2 действительных корня.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

II. ax 2 +bx+c=0 квадратное уравнение частного вида при четном втором

коэффициенте b

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Пример 3) 3x 2 -10x+3=0.

Решение. a=3; b=-10 ( четное число ); c=3.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Пример 4) 5x 2 -14x-3=0.

Решение. a=5; b= -14 ( четное число ); c=-3.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Пример 5) 71x 2 +144x+4=0.

Решение. a=71; b=144 ( четное число ); c=4.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Пример 6) 9x 2 -30x+25=0.

Решение. a=9; b=-30 ( четное число ); c=25.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

III. ax 2 +bx+c=0 квадратное уравнение частного вида при условии : a-b+c=0.

Первый корень всегда равен минус единице, а второй корень равен минус с, деленному на а:

Пример 7) 2x 2 +9x+7=0.

Решение. a=2; b=9; c=7. Проверим равенство: a-b+c=0. Получаем: 2-9+7=0.

Тогда x1=-1, x2=-c/a=-7/2=-3,5. Ответ: -1; -3,5.

IV. ax 2 +bx+c=0 квадратное уравнение частного вида при условии: a+b+c=0.

Первый корень всегда равен единице, а второй корень равен с, деленному на а:

Пример 8 ) 2x 2 -9x+7=0.

Решение. a=2; b=-9; c=7. Проверим равенство: a+b+c=0. Получаем: 2-9+7=0.

Тогда x1=1, x2=c/a=7/2=3,5. Ответ: 1; 3,5.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Неполные квадратные уравнения

Неполное квадратное уравнение – это уравнение вида

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax 2 + bx = 0,если c = 0;
ax 2 + c = 0,если b = 0;
ax 2 = 0,если b = 0 и c = 0.

Видео:Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

Решение неполных квадратных уравнений

Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

Чтобы ax + b было равно нулю, нужно, чтобы

x = —b.
a

Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

x1 = 0 и x2 = —b.
a

Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a 2 — 12a = 0
a(a — 12) = 0
a1 = 0a — 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x 2 = x
7x 2 — x = 0
x(7x — 1) = 0
x1 = 07x — 1 = 0
7x = 1
x2 =1
7

Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

ax 2 = —c, следовательно, x 2 = —c.
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

В этом случае уравнение будет иметь два противоположных корня:

Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y 2
24 — 2y 2 = 0
-2y 2 = -24
y 2 = 12
y1 = +√ 12y2 = -√ 12

Пример 2. Решите уравнение:

b 2 — 16 = 0
b 2 = 16
b1 = 4b2 = -4

Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Немного теории.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Видео:Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Формулы корней квадратных уравнений

Пусть дано квадратное уравнение ax 2 + bx + c = 0 . Преобразуем квадратный трехчлен ax 2 + bx + c методом выделения полного квадрата.

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

Обычно выражение b 2 — 4ac обозначают буквой D и называют дискриминантом квадратного уравнения ax 2 + bx + c = 0 .

Любое квадратное уравнение можно преобразовать к этому виду, удобному для того, чтобы определять число корней квадратного уравнения и находить эти корни.

Решение: a = 2, b = 4, c = 7

D = 4 * 4 — 4 * 2 * 7 = 16 — 56 = — 40

Так как D , то действительных корней нет.

2. Если D = 0 , то квадратное уравнение имеет один корень, который находится п о формуле:

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру и это единственный корень уравнения.

4x 2 — 20x + 25 = 0

Решение: a = 4, b = -20, c = 25

D = (-20)* (-20) — 4 * 4 * 25 = 400 — 400 = 0

Так как D = 0 , то данное уравнение имеет один корень:

3. Если D > 0 , то квадратное уравнение имеет два корня:

Уравнение ax2 bx c 0 можно привести к виду 2ax b 2 d учи ру

3x 2 + 8x — 11 = 0

Решение: a = 3, b = 8, c = -11

D = (-8)* (-8) — 4 * 3 * (-11) = 64 + 132 = 196

Так как D > 0 , то имеются два корня уравнения:

💡 Видео

Алгебра 8 класс. Квадратные уравнения ах² + 2kx + c = 0 с чётным вторым коэффициентом.Скачать

Алгебра 8 класс. Квадратные уравнения ах² + 2kx + c = 0 с чётным вторым коэффициентом.

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Почему a(x-x1)(x-x2)=ax2+bx+cСкачать

Почему a(x-x1)(x-x2)=ax2+bx+c

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Системы из показательных и тригонометрических уравнений на ЕГЭ. Часть 2.1. Алгебра 11 классСкачать

Системы из показательных и тригонометрических уравнений на ЕГЭ. Часть 2.1. Алгебра 11 класс

Как запомнить теорему ВиетаСкачать

Как запомнить теорему Виета

Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминант

ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20 алгебра 8 классСкачать

ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20  алгебра 8 класс
Поделиться или сохранить к себе: