Коррозией металлов называют самопроизвольное разрушение металлов под действием различных окислителей из окружающей среды.
В реальных условиях коррозии обычно подвергаются технические металлы, содержащие примеси других металлов и неметаллических веществ.
Механизм электрохимической коррозии в таких металлах аналогичен механизму процессов, протекающих в короткозамкнутых гальванических элементах, в которых на участках с более отрицательным потенциалом идет процесс окисления (разрушение металлов), а на участках с более положительным потенциалом процесс восстановления окислителя (коррозионной среды).
Наиболее часто встречаются окислители (деполяризаторы):
· ионы водорода (коррозия с водородной деполяризацией)
2Н + + 2 ē = Н 2 (в кислой среде),
2Н2О + 2 ē = Н2 + 2ОН — (в нейтральной и щелочной средах);
O2 + 4 ē + 4Н + = 2Н2О (в кислой среде);
О2 +4 ē + 2Н2О = 4ОН — (в щелочной и нейтральной средах).
Методика рассмотрения работы гальванопары при электрохимической коррозии.
· Составляют схему гальванопары:
· Выписывают стандартные потенциалы металлов и окислителей коррозионной среды (табл.П.7), определяют восстановитель (меньший потенциал), окислитель (больший потенциал).
· Записывают уравнения процессов окисления и восстановления и суммарное уравнение окислительно-восстановительной реакции, протекающей при гальванокоррозии.
· Указывают направление движения электронов.
Пример 1.Гальванопара алюминий —железо в воде (среда нейтральная). В воде растворен кислород.
· Схема гальванопары Al / H2O, O2 / Fe
· Потенциалы = —1,88 B; = —0,46B;
= + 0,814B.
Восстановитель – Al, окислитель — О2.
· Al(—): 4 Al — 3 ē + 3Н2О = Al(OH)3+ 3Н + —процесс окисления;
Fe(+): 3 О2 + 4 ēē + 2Н2 О = 4ОН — —процесс восстановления
· Направление движения электронов от участка с меньшим потенциалом к участку с большим потенциалом:
(—) Al/ Fе (+) ē
О2 , Н2О
Пример 2. Определить процессы, протекающие при коррозии луженого железа (среда – влажный воздух, содержащий кислород, пары воды и ионы Н + ), если нарушена сплошность покрытия.
· Потенциалы:= —0,44 B; = —0,136 B;
= + 1,228 B.
Восстановитель – железо, окислитель – кислород.
·Fe(—): 2 Fe — 2ē = Fe 2+ – процесс окисления
Sn(+): 1 О2 + 4 ē + 4Н + =2Н2О – процесс восстановления
2Fe + О2 + 4Н + = 2Fe 2+ + 2Н2О
При нарушении целостности покрытия будет разрушаться Fe.
· Электроны движутся от участка с меньшим потенциалом к участку с большим потенциалом:
(—) Fe/ Sn (+) ē
О2 , Н +
Пример 3. Рассмотреть коррозию детали из железа и алюминия в щелочной среде (КОН), если растворенный кислород отсутствует.
· Схема гальванопары: Al / КОН/ Fe
· Потенциалы: = —2,36 B; = —0,874 B;
= — 0,827 B. Восстановитель —алюминий, окислитель — вода.
· Al(—): 2 Al — 3ē + 4OH — = AlO2 — + 2H2O – процесс окисления
Fe(+): 3 2 H2O + 2 ē = 2 OH — + H2 – процесс восстановления
2 Al + 2 OH — + 2H2O = 2 AlO2 — + 3 H2
· Направление перемещения электронов в системе:
(—) Al/ Fe (+) ē
H2O, KOH
Задание к подразделу 4.4
Рассмотрите коррозию гальванопары, используя потенциалы (табл. П.7), укажите анод и катод соответствующей гальванопары в различной коррозионной среде, рассчитайте ЭДС, напишите уравнения анодного и катодного процессов, молекулярное уравнение реакции коррозии, укажите направление перемещения электронов в системе.
Номер задания | Коррозионная среда | ||
а) H2O + O2 | б) NaOH + H2O | в) H2O + Н + | |
321. | Fe / Zn | Zn / Al | Pb / Zn |
322. | Fe / Ni | Fe / Zn | Al / Cu |
323. | Pb / Fe | Cd / Cr | Al / Ni |
324. | Cu / Zn | Al / Cu | Sn / Cu |
325. | Zn / Fe | Fe / Cr | Co / Al |
326. | Zn / Al | Pb / Zn | Cr / Ni |
327. | Cr / Cu | Pb / Cr | Bi / Ni |
328. | Cu / Al | Cr / Zn | Fe / Mg |
329. | Zn / Sn | Mg / Cd | Cr / Bi |
330. | Co / Mg | Zn / Fe | Pb / Al |
331. | Pb / Zn | Bi / Ni | Cd / Al |
332. | Bi / Ni | Cu / Zn | Fe / Ni |
333. | Fe / Mg | Fe / Cu | Co / Cd |
334. | Sn / Fe | Pb / Zn | Cr / Fe |
335. | Cr / Fe | Fe / Mg | Co / Cu |
336. | Fe / Cr | Cr / Cu | Cr / Cu |
337. | Fe / Cu | Cd/ Zn | Cd/ Zn |
338. | Zn / Cu | Cr / Ni | Cr / Cd |
339. | Mg / Cu | Cr / Cd | Zn / Al |
340. | Sn / Cu | Bi / Ni | Bi / Ni |
Электролиз растворов
Электролиз – это совокупность окислительно-восстановительных процессов, происходящих при прохождении электрического тока через электрохимическую систему, состоящую из двух электродов и электролита.
Электрод, на котором происходит восстановление, называется катодом, он заряжен отрицательно. Электрод, на котором происходит окисление, называется анодом, он заряжен положительно.
При электролизе водных растворов могут протекать процессы, связанные с электролизом воды, т.е. растворителя.
Катодные процессы
На катоде возможно восстановление:
· катионов металла Ме n+ + nē = Me;
· катиона водорода (свободного или в составе молекул воды):
2H + + 2ē = H 2 ( в кислой среде) ;
2H2O + 2 ē =H 2+ 2 OH — ( в нейтральной и щелочной средах).
Для выбора приоритетного процесса следует сравнить стандартные электродные потенциалы металла и водорода (табл. П.6, П.7). Потенциал восстановления катионов водорода необходимо использовать с учетом перенапряжения, » —1 В.Все металлы по своему поведению при электролизе водных растворов можно разделить на 3 группы.
1. Активные металлы (Li — Al) из-за низкой окислительной способности их ионов на катоде не осаждаются, вместо них идет восстановление ионов водорода.
2. Металлы средней активности (Mn, Zn, Fe, Sn) могут осаждаться на катоде с одновременным выделением водорода.
3. Малоактивные металлы (стоящие в ряду напряжений после водорода) из-за высокой окислительной способности их ионов осаждаются на катоде без выделения водорода.
Анодные процессы
На аноде возможны процессы окисления:
· материала анода Ме — nē = Me n +
Анионы кислородосодержащих кислот, имеющие в своем составе атом
элемента в высшей степени окисления (SO4 2 — , NO3 — и др.), при электролизе водных растворов на аноде не разряжаются.
С учетом перенапряжения величину потенциала выделения кислорода нужно считать равной 1,8 В.
Пример 1. Электролиз водного раствора сульфата калия с инертными электродами:
(-) Kатод K + H2O(+) Aнод SO4 2 — H2O
= — 2,92 B ; = -1 B. Сульфат-ионы не разряжаются.
Так как> , » 1,8 B.
происходит восстановление воды: 2H2O — 4ē = O2 + 4 H +
среда щелочная среда кислая
Пример 2. Электролиз водного раствора хлорида олова с инертными электродами:
SnCl 2 = Sn 2+ + 2Cl —
(-) Kатод Sn 2 + , H2O(+) Aнод Cl — , H2O
= — 0,136 B ; = -1B. = 1,36 В ; » 1,8 B.
Так как> , Так как , идет идет процесс восстановления процесс окисления ионов Сl — :
ионов олова: Sn 2+ + 2 ē = S n 2Cl — — 2 ē = Cl 2
Пример 3. Электролиз сульфата меди с медным анодом:
(-) Kатод Cu 2+ H2O (+) Aнод —Сu SO4 2 — H2O
= + 0,34 B ; = -1 B. = + 0,34 B; » 1,8 B.
Так как> , Сульфат-ионы не разряжаются.
происходит восстановление Так как ,
ионов меди:Cu 2+ +2ē = Cu анод растворяется: Cu — 2ē = Cu 2+
Количественные соотношения при электролизе определяют в соответствии с законами, открытыми М. Фарадеем (1834).
Обобщенный закон Фарадея связывает количество вещества, образовавшегося при электролизе, со временем электролиза и силой тока:
,
где m — масса образовавшегося вещества , г;
М — молярная масса вещества, г/ моль;
n — количество электронов, участвующих в электродном процессе;
t — время электролиза, с;
F — константа Фарадея (96500 Кл/моль).
Для газообразных веществ, выделяющихся при электролизе, формулу использют в виде ,
где V— объем газа, выделяющегося на электроде; V 0 — объем 1 моль газообразного вещества при нормальных условиях (22,4 л/моль).
Пример 4. Рассчитать массу олова и объем хлора при нормальных условиях, выделившихся при электролизе раствора хлорида олова с инертными электродами в течение 1 часа при силе тока 4А.
Решение.
Задание к подразделу 4.5
Рассмотрите катодные и анодные процессы при электролизе водных растворов веществ. Процессы на электродах обоснуйте значениями потенциалов (табл. П.6,7,8). Составьте схемы электролиза с инертными электродами водных растворов предложенных соединений (отдельно два раствора) с инертными электродами либо растворимым анодом. Рассчитайте массу или объем (при нормальных условиях для газов) продуктов, выделяющихся на электродах при пропускании через раствор в течение 1 часа тока силой 1 А.
Видео:Электролиз. 10 класс.Скачать
Составление электронных уравнений анодного и катодного процессов происходящих при коррозии
Видео:Коррозия металла. Химия – ПростоСкачать
Решение задач на коррозию металлов
Задание 287.
Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары магний — никель. Какие продукты коррозии образуются в первом и во втором случаях?
Решение:
Магний имеет более электроотрицательный стандартный электродный потенциал (-2,36 В), чем никель (-0,24 В), поэтому он является анодом, никель – катодом.
Анодный процесс – окисление металла: Mе 0 — 2 = Mе n+
и катодный процесс – восстановление ионов водорода (водородная деполяризация) или молекул кислорода (кислородная деполяризация). Поэтому при коррозии пары Mg — Ni с водородной деполяризацией происходит следующие процессы:
Анодный процесс: Mg 0 — 2 = Mg 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2↑
Продуктом коррозии будет газообразный водород соединение магния с кислотным остатком (соль).
При коррозии пары Mg — Ni в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление магния:
Анодный процесс: Mg 0 — 2 = Mg 2+
Катодный процесс: в нейтральной среде: 1/2O2 + H2O + 2 = 2OH —
в нейтральной или в щелочной среде: 1/2O 2 + H 2 O + 2 = 2OH —
Так как ионы Mg 2+ с гидроксид-ионами ОН — образуют нерастворимый гидроксид, то продуктом коррозии будет Mg(OH)2.
Задание 288.
В раствор хлороводородной (соляной) кислоты поместили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
Решение:
а) При помещении цинковой пластинки в раствор хлороводородной (соляной) кислоты происходит реакция замещения:
Через некоторое время цинковая пластинка в растворе разбавленной соляной кислоте пассивируется оксидной плёнкой, образующейся при взаимодействии цинка с кислородом растворённым в воде по схеме: Zn + 1/2 O2 = ZnO, поэтому коррозия цинка вскоре замедлится.
б) При помещении цинковой пластинки, частично покрытой медью, в раствор соляной кислоты образуется гальваническая пара Zn — Cu, в которой цинк будет анодом, а медь – катодом. Происходит это так, потому что цинк имеет более электроотрицательный электродный потенциал (-0,763 В), чем медь (+0-,34 В).
Анодный процесс: Zn 0 — 2 = Zn 2+ ;
Катодный процесс: в кислой среде: 2Н + + 2 = Н2↑
Ионы цинка Zn 2+ с ионами хлора Cl — будут давать соль ZnCl2 – сильный электролит, а водород будет интенсивно выделяться в виде пузырьков газа. Этот процесс будет бурно протекать до тех пор пока не закончится приход ионов водорода Н + соляной кислоты или пока полностью не растворится цинковая пластинка. Ионно-молекулярное уравнение коррозии:
Zn 0 + 2H + = Zn 2+ + H2О↑
Молекулярная форма уравнения:
Задание 289.
Почему химически чистое железо более стойко против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов происходящих при коррозии технического железа во влажном воздухе и в кислой среде.
Решение:
Химически чистое железо более стойко к коррозии, потому что с кислородом образует на поверхности оксидную плёнку, которая препятствует дальнейшему разрушению металла. Техническое железо содержит примеси различных металлов и неметаллов, которые образуют различные гальванические пары железо — примесь. Железо, имея отрицательный стандартный электродный потенциал (-0,44 В) со многими примесями, потенциал которых значительно положительнее, является анодом, а примеси – катодом:
Анодный процесс: Fe 0 -2 = Fe 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2 ↑
в нейтральной или в щелочной среде: 1/2O2 + H2O + 2 = 2OH —
Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:
Видео:Электрохимическая коррозияСкачать
Please wait.
Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать
We are checking your browser. gomolog.ru
Видео:ЭлектролизСкачать
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:Электролиз: катодные и анодные процессы #электролиз #химшкола #химия #егэхимияСкачать
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6e238fa3f9704971 • Your IP : 85.95.188.35 • Performance & security by Cloudflare
🎥 Видео
ЭЛЕКТРОЛИЗ катод анод ИОНЫСкачать
Электрохимическая коррозия (алюминий — медь)Скачать
Как писать уравнения электролиза? | Химия ЕГЭ 2022 | УмскулСкачать
Химия / 9 класс / ЭлектролизСкачать
уравнения электролизаСкачать
ЕГЭ Химия Электролиз Процессы на катоде | Репетитор Видеоурок 11 класс | Подготовка к ЕГЭ по химииСкачать
Задание ЕГЭ №20. Электролиз расплавов и растворов.Скачать
ЭЛЕКТРОЛИЗ за 5 МИНУТ | Химия ЕГЭСкачать
Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать
Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать
7. ЭлектролизСкачать
ЭлектролизСкачать
Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)Скачать
Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.Скачать