Уравнение адиабатического процесса в координатах pv

Блог об энергетике

Видео:29. Адиабатический процесс. Уравнение ПуассонаСкачать

29. Адиабатический процесс. Уравнение Пуассона

энергетика простыми словами

Видео:Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Основные термодинамические процессы

Основными процессами в термодинамике являются:

  • изохорный, протекающий при постоянном объеме;
  • изобарный, протекающий при постоянном давлении;
  • изотермический, происходящий при постоянной температуре;
  • адиабатный, при котором теплообмен с окружающей средой отсутствует;
  • политропный, удовлетворяющий уравнению pv n = const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в pv иTs координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Уравнение адиабатического процесса в координатах pv Уравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pv

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT) следует:

т. е. давление газа прямо пропорционально его абсолютной температуре:

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при cv = const определяется по формуле:

Т. к.l = 0, то на основании первого закона термодинамики Δu = q, а значит изменение внутренней энергии можно определить по формуле:

Изменение энтропии в изохорном процессе определяется по формуле:

Изобарный процесс

Уравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pv

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

Количество теплоты при cp = const определяется по формуле:

Изменение энтропии будет равно:

Изотермический процесс

Уравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pv

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

Адиабатный процесс

Уравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pvУравнение адиабатического процесса в координатах pv

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через cад, и условие dq = 0 выразим следующим образом:

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (cад = 0).

и уравнение кривой адиабатного процесса (адиабаты) в p, v-диаграмме имеет вид:

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

kвыхлопных газов ДВС = 1,33

Из предыдущих формул следует:

Техническая работа адиабатного процесса (lтехн) равна разности энтальпий начала и конца процесса (i1 i2).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным. В T, s-диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом.

Политропный процесс

Политропным называется процесс, который описывается уравнением:

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p, vи Tв любых двух точках на политропе:

Работа расширения газа в политропном процессе равна:

Уравнение адиабатического процесса в координатах pv

В случае идеального газа эту формулу можно преобразовать:

Уравнение адиабатического процесса в координатах pv

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

Уравнение адиабатического процесса в координатах pv

представляет собой теплоемкость идеального газа в политропном процессе.

При cv, k и n = const cn = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p, v координатах в зависимости от показателя политропа n.

Уравнение адиабатического процесса в координатах pv

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

n > 0 – гиперболические кривые,

n По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Видео:Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.

Адиабатный процесс. Изопроцессы в термодинамике

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Уравнение адиабатического процесса в координатах pv

На этом уроке мы будем работать с уже известными нам физическими понятиями, но в несколько иной области применения. А именно с изопроцессами в термодинамике. Мы рассмотрим, какие изменения в первый закон термодинамики (закон сохранения энергии в тепловых процессах) внесут протекания этих самых процессов при неизменном макроскопическом параметре газа. Также мы рассмотрим новый, ранее неизвестный процесс – адиабатный.

Видео:Физика 10 класс. Адиабатный процесс.Скачать

Физика 10 класс. Адиабатный процесс.

Адиабатический процесс. Политропный процесс.

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстро протекающие процессы. Например, адиабатическим процессом можно считать процесс в двигателях внутреннего сгорания(расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т.д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического процесса следует, что

dА=-dU, (2.6.1)
т.е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражение для произвольной массы газа перепишем уравнение в виде

Уравнение адиабатического процесса в координатах pv. (2.6.2)

Продифференцировав уравнение состояния для идеального газа Уравнение адиабатического процесса в координатах pv, получим

Уравнение адиабатического процесса в координатах pv. (2.6.3)
Исключим из (2.6.2) и (2.6.3) температуру Т:

Уравнение адиабатического процесса в координатах pv.
Разделив переменные и учитывая, что Уравнение адиабатического процесса в координатах pvнайдем

Уравнение адиабатического процесса в координатах pv.

Интегрируя это уравнение в пределах от p1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

Уравнение адиабатического процесса в координатах pv.

Уравнение адиабатического процесса в координатах pv.

Так как состояния 1 и 2 выбраны произвольно, то можно записать

PV g =const. (2.6.4)
Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (2.6.4) с помощью уравнения Клапейрона-Менделеева:

Уравнение адиабатического процесса в координатах pv,

соответственно давление или объем:

Уравнение адиабатического процесса в координатах pv(2.6.5)

Уравнение адиабатического процесса в координатах pv. (2.6.6)

Эти выражения представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина

Уравнение адиабатического процесса в координатах pv(2.6.7)
называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, g =1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, g =1,4. Значения вычисленные по формуле (2.6.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабат а) в координатах р, V изображается гиперболой (рис. 2.6.1).

Уравнение адиабатического процесса в координатах pvРис. 2.6.1На рисунке видно, что адиабата ( Уравнение адиабатического процесса в координатах pv) более крута, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 1-3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе.
Запишем уравнение в виде

Уравнение адиабатического процесса в координатах pv.

Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до Т2 и работа расширения идеального газа

Уравнение адиабатического процесса в координатах pv. (2.6.8)

Применяя те же приемы, выражение (2.6.8) для работы при адиабатическом расширении можно преобразовать к виду

Уравнение адиабатического процесса в координатах pv.

Работа, совершаемая газом при адиабатическом расширении 1-2 (определяется заштрихованной площадью, выполненной на рис. 61), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны Сv и Сp, в изотермическом процессе (dT=0) теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается постоянной, называется политропным.

Исходя из первого начала термодинамики при условии постоянства теплоемкости (C=const), можно вывести уравнение политропы:

pV n =const, (2.6.9)
где Уравнение адиабатического процесса в координатах pv— показатель политропы. Очевидно, что при С=0, n=gполучается уравнение адиабаты; при С=¥, n=l — уравнение изотермы; при С=Сp, n=0 — уравнение изобары, при С=Сv , n=±¥ — уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

2.7 Круговой процесс (цикл).
Обратимые и необратимые процессы.

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис. 2.7.1).

Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1) газа. Работа расширения (определяется площадью фигуры 1а2V2V1) положительна (dV > 0), работа сжатия (определяется площадью фигуры 2blV1V22) отрицательна (dV 0 (цикл протекает по часовой стрелке), то он называется прямым (рис. 2.7.1,а), если за цикл совершается отрицательная работа Уравнение адиабатического процесса в координатах pv 0. (2.8.4)

Выражения (2.8.3) и (2.8.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (2.8.3) и (2.8.4) можно представить в виде неравенства Клаузиуса

DS Уравнение адиабатического процесса в координатах pv0, (2.8.5)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (2.8.2), изменение энтропии

Уравнение адиабатического процесса в координатах pv, (2.8.6)
где подынтегральное выражение и пределы интегрирования надо выразить через величины, характеризующие исследуемый процесс. Формула (2.8.6) определяет энтропию лишь с точностью до аддитивной постоянной.

Физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (2.8.6), найдем изменение энтропии в процессах идеального газа. Так как

Уравнение адиабатического процесса в координатах pv,

то Уравнение адиабатического процесса в координатах pv,

или Уравнение адиабатического процесса в координатах pv, (2.8.7)

т.е. изменение энтропии Уравнение адиабатического процесса в координатах pvидеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода 1®2.

Так как для адиабатического процесса dQ=0, то DS=0 и, следовательно, S=const, т.е. адиабатический обратимый процесс протекает при постоянной энтропии. Из формулы (2.8.7) следует, что при изотермическом процессе (T1=T2)

Уравнение адиабатического процесса в координатах pv

при изохорном процессе (V1 =V2)

Уравнение адиабатического процесса в координатах pv.

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропии тел, входящих в систему.

Более глубокий смысл энтропии вскрывается в статистической физике, энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы — это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние.

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

S=kInW, (2.8.8)
где k — постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.
Так как реальные процессы необратимы, то можно утверждать, что все
процессы в замкнутой системе ведут к увеличению ее энтропии — принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных к более вероятным.

Сопоставляя выражения (2.8.5) и (2.8.8), видим, что энтропия и термодинамическая вероятность состояний замкнутой системы могут либо возрастать (в случае необратимых процессов), либо оставаться постоянными (в случае обратимых процессов).

Отметим, однако, что эти утверждения имеют место для систем, состоящих из очень большого числа частиц, но могут нарушаться в системах с малым числом частиц. Для «малых» систем могут наблюдаться флуктуации, т.е. энтропия и термодинамическая вероятность состояний замкнутой системы на определенном отрезке времени могут убывать, а не возрастать, или оставаться постоянными.

🎥 Видео

Урок 162. Построение графиков изопроцессов в различных координатахСкачать

Урок 162. Построение графиков изопроцессов в различных координатах

Физика. Термодинамика: Адиабатный процесс. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. Термодинамика: Адиабатный процесс. Центр онлайн-обучения «Фоксфорд»

Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Основы теплотехники. Термодинамические процессы. Изохорный, изобарный, изотермический, адиабатный.Скачать

Основы теплотехники. Термодинамические процессы. Изохорный, изобарный, изотермический, адиабатный.

Урок 172. Применение 1 закона термодинамики для различных процессовСкачать

Урок 172. Применение 1 закона термодинамики для различных процессов

Адиабатный процесс. Практическая часть. 10 классСкачать

Адиабатный процесс.  Практическая часть. 10 класс

Физика Изучение графиков изопроцессовСкачать

Физика Изучение графиков изопроцессов

Урок 31. Работа в термодинамике и адиабатический процесс.Скачать

Урок 31. Работа в термодинамике и адиабатический процесс.

Урок 163. Задачи на графики процессов в газахСкачать

Урок 163. Задачи на графики процессов в газах

Физика. МКТ: Графики газовых процессов. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Графики газовых процессов. Центр онлайн-обучения «Фоксфорд»

Работа при изотермическом процессеСкачать

Работа при изотермическом процессе

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.

Лекция по физике №8. Распределение Больцмана. Теплоёмкость, Уравнение адиабатического процесса.Скачать

Лекция по физике №8. Распределение Больцмана. Теплоёмкость, Уравнение адиабатического процесса.

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процессСкачать

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процесс

Изопроцессы. Подготовка к ЕГЭ по Физике. Николай Ньютон. ТехноскулСкачать

Изопроцессы. Подготовка к ЕГЭ по Физике. Николай Ньютон. Техноскул

Применение первого начала термодинамики к изопроцессамСкачать

Применение первого начала термодинамики к изопроцессам
Поделиться или сохранить к себе: