Уравнение 4 степени методом деления

Схема Горнера. Примеры

РЕШЕНИЕ УРАВНЕНИЙ 4-ОЙ СТЕПЕНИ ПО СХЕМЕ ГОРНЕРА

2x 4 + 5x 3 — 11x 2 — 20x + 12 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 12 являются ±1, ±2, ±3, ±4, ±6, ±12. Начнем их подставлять по-очереди:

1: 2 + 5 — 11 — 20 + 12 = -12 ⇒ число 1 не является корнем многочлена

-1: 2 — 5 — 11 + 20 + 12 = 18 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 16 + 5 ∙ 8 — 11 ∙ 4 — 20 ∙ 2 + 12 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x — 2. Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

25-11-2012
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

25-11-2012
22
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
25-11-2012
229
2 ∙ 2 + 5 = 9
25-11-2012
2297
2 ∙ 9 — 11 = 7
25-11-2012
2297-6
2 ∙ 7 — 20 = -6
25-11-2012
2297-60
2 ∙ (-6) + 12 = 0

Последнее число — это остаток от деления. Если он равен 0, значит мы все верно посчитали.

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 — 11x 2 — 20x + 12 = (x — 2)(2x 3 + 9x 2 + 7x — 6)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 9x 2 + 7x — 6.

Опять ищем корень среди делителей свободного члена. Делителями числа -6 являются ±1, ±2, ±3, ±6.

1: 2 + 9 + 7 — 6 = 12 ⇒ число 1 не является корнем многочлена

-1: -2 + 9 — 7 — 6 = -6 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 9 ∙ 4 + 7 ∙ 2 — 6 = 60 ⇒ число 2 не является корнем многочлена

-2: 2 ∙ (-8) + 9 ∙ 4 + 7 ∙ (-2) — 6 = 0 ⇒ число -2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

25-11-2012
2297-60
-22
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
25-11-2012
2297-60
-225
-2 ∙ 2 + 9 = 5
25-11-2012
2297-60
-225-3
-2 ∙ 5 + 7 = -3
25-11-2012
2297-60
-225-30
-2 ∙ (-3) — 6 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 — 11x 2 — 20x + 12 = (x — 2)(x + 2)(2x 2 + 5x — 3)

Многочлен 2x 2 + 5x — 3 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант, а можно поискать корень среди делителей числа -3. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -3

25-11-2012
2297-60
-225-30
-32
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
25-11-2012
2297-60
-225-30
-32-1
-3 ∙ 2 + 5 = -1
25-11-2012
2297-60
-225-30
-32-10
-3 ∙ (-1) — 3 = 0

Таким образом мы исходный многочлен разложили на линейные множители:

2x 4 + 5x 3 — 11x 2 — 20x + 12 = (x — 2)(x + 2)(x + 3)(2x — 1)

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение Уравнение 4 степени методом деленияодно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида Уравнение 4 степени методом деления, где Уравнение 4 степени методом деленияпо определению. Такое уравнение имеет единственный корень Уравнение 4 степени методом деления.

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида Уравнение 4 степени методом деления, где Уравнение 4 степени методом деления. Количество корней и сами корни определяются дискриминантом уравнения Уравнение 4 степени методом деления. Для Уравнение 4 степени методом деленияуравнение корней не имеет, для Уравнение 4 степени методом деленияимеет один корень (два одинаковых корня)

    Уравнение 4 степени методом деления, для Уравнение 4 степени методом деленияимеет два различных корня Уравнение 4 степени методом деления.

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение Уравнение 4 степени методом деления-й степени Уравнение 4 степени методом деленияимеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена Уравнение 4 степени методом деленияна множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение Уравнение 4 степени методом деления

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Уравнение 4 степени методом деления

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Уравнение 4 степени методом деления

    Итак, данное кубическое уравнение имеет три корня: Уравнение 4 степени методом деления; Уравнение 4 степени методом деления;Уравнение 4 степени методом деления.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид Уравнение 4 степени методом деления(т.е. уравнения, квадратные относительно Уравнение 4 степени методом деления). Для их решения вводят новую переменную Уравнение 4 степени методом деления.

    Решим биквадратное уравнение Уравнение 4 степени методом деления.

    Введём новую переменную Уравнение 4 степени методом деленияи получим квадратное уравнение Уравнение 4 степени методом деления, корнями которого являются числа Уравнение 4 степени методом деленияи 4.

    Вернёмся к старой переменной Уравнение 4 степени методом деленияи получим два простейших квадратных уравнения:

    Уравнение 4 степени методом деления(корни Уравнение 4 степени методом деленияи Уравнение 4 степени методом деления)

    Уравнение 4 степени методом деления(корни Уравнение 4 степени методом деленияи Уравнение 4 степени методом деления)

    Итак, данное биквадратное уравнение имеет четыре корня:

    Уравнение 4 степени методом деления; Уравнение 4 степени методом деления;Уравнение 4 степени методом деления.

    Попробуем решить уравнение Уравнение 4 степени методом деленияиспользуя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида Уравнение 4 степени методом деления, где Уравнение 4 степени методом делениямногочлен n-й степени

    Уравнение 4 степени методом деления

    Приведём некоторые утверждения о корнях многочлена вида Уравнение 4 степени методом деления:

    1) Многочлен Уравнение 4 степени методом деления-й степени Уравнение 4 степени методом деленияимеет не более Уравнение 4 степени методом делениякорней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка Уравнение 4 степени методом делениязначения многочлена имеют разные знаки (т.е. ,Уравнение 4 степени методом деления), то на интервале Уравнение 4 степени методом делениянаходится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число Уравнение 4 степени методом деленияявляется корнем многочлена вида Уравнение 4 степени методом деления, то этот многочлен можно представить в виде произведения Уравнение 4 степени методом деления, где Уравнение 4 степени методом делениямногочлен (Уравнение 4 степени методом деления-й степени. Другими словами, многочлена вида Уравнение 4 степени методом деленияможно разделить без остатка на двучлен Уравнение 4 степени методом деления. Это позволяет уравнение Уравнение 4 степени методом деления-й степени сводить к уравнению (Уравнение 4 степени методом деления-й степени (понижать степень уравнения).

    5) Если уравнение Уравнение 4 степени методом делениясо всеми целыми коэффициентами (причём свободный член Уравнение 4 степени методом деления) имеет целый корень Уравнение 4 степени методом деления, то этот корень является делителем свободного члена Уравнение 4 степени методом деления. Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение Уравнение 4 степени методом деления.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: Уравнение 4 степени методом деления. Проверка показывает, что корнем уравнения является число -1. Значит, многочлен Уравнение 4 степени методом деленияможно представить в виде произведения Уравнение 4 степени методом деления, т.е. многочлен Уравнение 4 степени методом деленияможно без остатка разделить на двучлен Уравнение 4 степени методом деления. Выполним такое деление “уголком”:

    Уравнение 4 степени методом деления

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Уравнение 4 степени методом деления

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Уравнение 4 степени методом деления

    Итак, данное уравнение имеет три корня:

    Уравнение 4 степени методом деления

    Пример 2. Решим уравнение Уравнение 4 степени методом деления.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: Уравнение 4 степени методом деления;Уравнение 4 степени методом деления. Проверим:

    Уравнение 4 степени методом деления

    Значит, многочлен Уравнение 4 степени методом деленияможно представить в виде произведения Уравнение 4 степени методом деления, т.е. многочлен Уравнение 4 степени методом деленияможно без остатка разделить на двучлен Уравнение 4 степени методом деления. Выполним такое деление “уголком”:

    Уравнение 4 степени методом деления

    Таким образом, мы разложили левую часть уравнения на множители:

    Уравнение 4 степени методом деления

    Аналогичным образом поступим и с многочленом Уравнение 4 степени методом деления.

    Если это уравнение Уравнение 4 степени методом деленияимеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: Уравнение 4 степени методом деления;Уравнение 4 степени методом деления. Проверим:

    Уравнение 4 степени методом деления

    Значит, многочлен Уравнение 4 степени методом деленияможно представить в виде

    произведения Уравнение 4 степени методом деления, т.е. многочлен Уравнение 4 степени методом деленияможно без остатка разделить на двучлен Уравнение 4 степени методом деления. Выполним такое деление “уголком”:

    Уравнение 4 степени методом деления

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Уравнение 4 степени методом деления

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Уравнение 4 степени методом деления

    Итак, данное уравнение имеет четыре корня:

    Уравнение 4 степени методом деления

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    Уравнение 4 степени методом деления

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).

    Видео:Метод неопределенных коэффициентов. 10 класс.Скачать

    Метод неопределенных коэффициентов. 10 класс.

    Решение уравнений четвертой степени

    Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

    Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

    Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

    Как решать уравнения высших степеней, очень лёгкий способ!!!

    Решение двучленного уравнения четвертой степени

    Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

    Для решения этого типа уравнений применяются формулы сокращенного умножения:

    A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

    Остается лишь найти корни квадратных трехчленов.

    Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

    Решение

    Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

    4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )

    Теперь найдем корни квадратных трехчленов.

    2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i

    2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i

    Мы получили четыре комплексных корня.

    Ответ: x = 1 2 ± i и x = — 1 2 ± i .

    Видео:Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

    Кубические уравнения. Деление столбиком. Схема Горнера.

    Решение возвратного уравнения четвертой степени

    Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

    х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

    A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

    Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :

    A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0

    Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

    Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

    Решение

    Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

    2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

    2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

    Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2

    2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

    Решим полученное квадратное уравнение:

    D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3

    Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .

    Решим первое уравнение:

    x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4

    Решим второе уравнение:

    x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2

    Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .

    Видео:Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать

    Уравнения высших степеней. Решение уравнений с помощью деления в столбик

    Решение биквадратного уравнения

    Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

    Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .

    Решение

    Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

    2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3

    Следовательно, x 2 = 1 2 или x 2 = — 3 .

    Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

    Ответ: x = ± 1 2 и x = ± i · 3 .

    Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

    Решение

    Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

    16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9

    Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .

    Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

    Видео:Схема Горнера. 10 класс.Скачать

    Схема Горнера. 10 класс.

    Решение уравнений четвертой степени с рациональными корнями

    Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

    Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

    11 класс, 3 урок, Уравнения высших степеней

    Решение уравнений четвертой степени по методу Феррари

    Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.

    Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

    Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .

    Решение

    Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.

    Составим и решим кубическое уравнение:
    y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0

    Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .

    Запишем два квадратных уравнения:
    x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

    x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0

    x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0

    Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .

    Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .

    🌟 Видео

    Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

    Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

    Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

    Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби

    Уравнение 4 степениСкачать

    Уравнение 4 степени

    Уравнение 4-й степени. Метод ФеррариСкачать

    Уравнение 4-й степени. Метод Феррари

    ЕГЭ по математике. Деление многочлена на двучленСкачать

    ЕГЭ по математике. Деление многочлена на двучлен

    Математика | Кубические уравнения по методу СталлонеСкачать

    Математика | Кубические уравнения по методу Сталлоне

    Вспоминаем схему Горнера и уравнения высших степенейСкачать

    Вспоминаем схему Горнера и уравнения высших степеней

    Метод неопределенных коэффициентовСкачать

    Метод неопределенных коэффициентов

    Метод группировки и метод деления уголком при решении уравнений высших степеней.Скачать

    Метод группировки и метод деления уголком при решении уравнений высших степеней.

    Теорема БезуСкачать

    Теорема Безу

    Решить уравнение 4 степени.Работают виртуозы!Скачать

    Решить уравнение 4 степени.Работают виртуозы!

    Деление многочлена на многочленСкачать

    Деление многочлена на многочлен
    Поделиться или сохранить к себе: